The multi-tasking of multiple testing

Juggling significance and false discoveries

Anna Vesely

Psicostat - 28.04.2023

University of Bremen vesely@uni-bremen.de

Motivation

In many fields, interest lies in making inference on a (potentially high) number m of features:

- medical data (1) effect of different drugs on a symptom
- medical data (2) effect of a drug on different symptoms
- genomics (differential) expression of genes
- neuroimaging brain activation in voxels
- . . .

The goal is detecting signal while keeping the errors under control

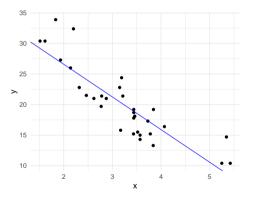
Multiple linear regression

$$y_j = \beta_0 + \sum_{i=1}^m \beta_i \, x_{ij}$$

We investigate which covariates have an effect on the outcome

Covariate i:

- null hypothesis H_i : $\beta_i = 0$
- p-value p_i

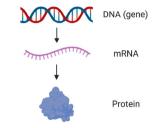


Gene expression is generally measured quantifying levels of the gene product (often a protein)

We look for differences between populations in the expression of \approx 20,000 genes

Gene i:

- null hypothesis H_i : no difference in gene i
- p-value p_i from first-level analysis



Individual hypothesis testing

Consider a single null hypothesis H_0 , e.g.,

 H_0 : a drug is not effective

The main goal is keeping under control the probability of

type I error \longleftrightarrow false discovery \longleftrightarrow falsely reject H_0 when it is true

Standard methods allow to bound this probability of error by an 'acceptable' risk α (e.g., $\alpha=$ 0.05)

		null hypothesis		
		false	true	
		(drug is effective)	(drug is not effective)	
test	rejected	true discovery	type I error	
lesi	not rejected	type II error	true negative	

 $\mathbb{P}(\mathsf{type} \mid \mathsf{error}) = \mathbb{P}(\mathsf{reject} \mid H_0) \leq \alpha$

- Simulate observations for a non-active feature: $X \sim \mathcal{N}(\mu, 1)$ with $\mu = 0$
- Test activation: H_0 : $\mu = 0$ (two-sided alternative)
- Using a one-sample t-test, obtain a p-value p

$$H_0 ext{ is true } \longrightarrow p \sim ext{Unif}[0,1]$$

Over many simulations, the proportion of rejections is $\approx \alpha$

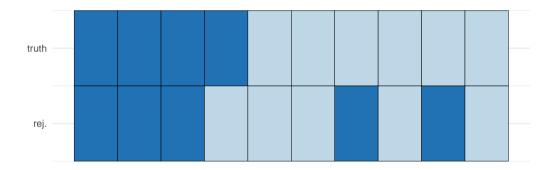
Multiple hypothesis testing

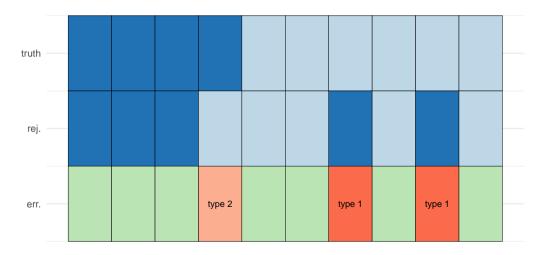
The goal is testing *m* hypotheses H_1, \ldots, H_m simultaneously from the same data

This is a non-trivial extension of the individual case!

Each test carries the risk of making a type I error \longrightarrow the risk of having at least one may become unmanageable

How do we generalize the concept of type I error and control it?





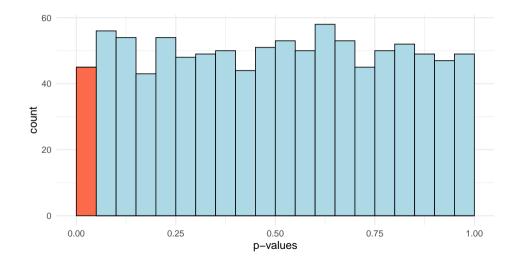
Simulations

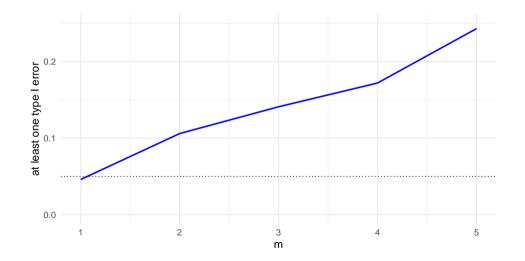
- Repeat the previous simulations for *m* independent features: $X_i \sim \mathcal{N}(\mu_i, 1)$ with $\mu_i = 0$
- Test activation for each: H_i : $\mu_i = 0$ (two-sided alternative)
- Obtain *m* p-values

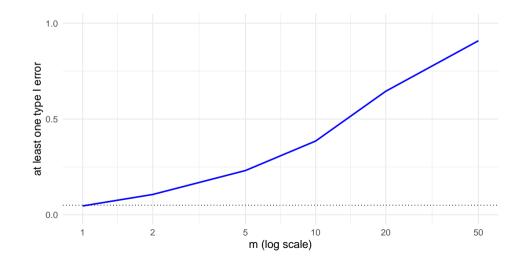
All hypotheses are true \longrightarrow each $p_i \sim \text{Unif}[0, 1]$

Without further adjustments, some of these p-values will be $\leq \alpha!$

m = 1000 tests, 1 simulation







		null hypothesis		
		false	true	tot.
tost	rejected	S	V	R
test	not rejected	Т	U	m-R
	tot.	m_1	m_0	m

We work on the false discoveries (rejections of true null hypotheses):

- number V
- proportion V/R

FWER control

		null hypothesis		
		false	true	tot.
test	rejected	S	V	R
	not rejected	Т	U	m-R
	tot.	m_1	m_0	m

 $\mathsf{FWER} = \mathbb{P}(\mathsf{at least one type } \mathsf{I error}) = \mathbb{P}(V > 0)$

A procedure controls it if FWER $\leq \alpha$

Instead of rejecting all $p_i \leq \alpha$:

- obtain adjusted p-values $\tilde{p}_i = p_i \cdot m$
- reject all $\tilde{p}_i \leq \alpha$

The method:

- controls the FWER under any dependence structure of the data
- may be very conservative and lead to many false negatives

FWER controlling methods

- Bonferroni always valid
- Holm-Bonferroni improves Bonferroni and remains always valid
- Hochberg valid under independence or positive dependence
- Hommel as Hochberg, slightly more powerful but slower
- . . .

The main methods are implemented in the R function p.adjust

```
data(mtcars)
fit = lm(mpg \sim disp + drat + wt, data = mtcars)
p = summary(fit)$coefficients[, 4][-1]
p_adj = p.adjust(p, method = "holm")
```

control	p-value	disp	drat	wt
no		0.098		
FWER	adjusted (Holm)	0.196	0.567	0.043

FWER control may be very stringent, especially when m is large

 \rightarrow it can lead to many false negatives, potentially missing important discoveries

This is not the only generalization of the type I error!

- If the goal is to minimize the risk of false discoveries \longrightarrow stick to FWER
- If we may allow some false discoveries to occur, as long as the overall proportion is controlled → ...

FDR control

		null hypothesis		
		false	true	tot.
test	rejected	S	V	R
test	rejected not rejected	Т	U	m-R
	tot.	m_1	m_0	m

$$\mathsf{FDP} = rac{\mathsf{false rejections}}{\mathsf{rejections}} = rac{V}{R}, \qquad \mathsf{FDR} = \mathbb{E}(\mathsf{FDP})$$

A procedure controls it if $\mathsf{FDR} \leq \alpha$

- Benjamini-Hochberg valid under independence, positive dependenceand many other settings (not always!)
- Benjamini-Yekutieli always valid, may be more conservative

• . . .

These methods are implemented in the same function p.adjust

```
data(mtcars)
fit = lm(mpg \sim disp + drat + wt, data = mtcars)
p = summary(fit)$coefficients[, 4][-1]
p_adj = p.adjust(p, method = "BH")
```

control	p-value	disp	drat	wt
no		0.098		
FWER				
FDR	adjusted (BH)	0.147	0.567	0.043

Other methods

- k-FWER generalized FWER
- FDX false discovery exceedance
- JER joint error rate
- FDP false discovery proportion
- . . .

$$\mathsf{FDP} = \frac{\mathsf{false rejections}}{\mathsf{rejections}} = \frac{V}{R}$$

A procedure controls it if it gives an upper $(1 - \alpha)$ -confidence bound B for it:

 $\mathbb{P}(\mathsf{FDP} \le B) \ge 1 - \alpha$

It is desirable to control the FDP of all possible subsets simultaneously

Familywise error rate

 $\mathsf{FWER} = \mathbb{P}(\mathsf{at least one false discovery}) \longrightarrow \mathsf{FWER} \leq \alpha$

False discovery proportion

 $\mathsf{FDP} = \frac{\mathsf{false rejections}}{\mathsf{rejections}} \quad \longrightarrow \quad \mathsf{upper confidence bound}$

False discovery rate

$$\mathsf{FDR} = \mathbb{E}(\mathsf{FDP}) \longrightarrow \mathsf{FDR} \leq \alpha$$

- FWER minimizes the risk of false discoveries
- FDR allows some false discoveries, controls the overall proportion
- . . .

Always state clearly which error is taken into account!

An overview

Goeman and Solari (2014). Multiple hypothesis testing in genomics. *Statistics in Medicine* 33