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Motivation



Multiple hypothesis testing

In many fields, interest lies in making inference on a (potentially high) number m of

features:

� medical data (1) - effect of different drugs on a symptom

� medical data (2) - effect of a drug on different symptoms

� genomics - (differential) expression of genes

� neuroimaging - brain activation in voxels

� . . .

The goal is detecting signal while keeping the errors under control
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Multiple linear regression

yj = β0 +
m∑
i=1

βi xij

We investigate which covariates

have an effect on the outcome

Covariate i:

� null hypothesis Hi : βi = 0

� p-value pi
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Differential gene expression

Gene expression is generally measured

quantifying levels of the gene product

(often a protein)

We look for differences between populations

in the expression of ≈ 20,000 genes

Gene i:

� null hypothesis Hi : no difference in gene i

� p-value pi from first-level analysis

3



Individual hypothesis testing



Test on a single feature

Consider a single null hypothesis H0, e.g.,

H0 : a drug is not effective

The main goal is keeping under control the probability of

type I error ←→ false discovery ←→ falsely reject H0 when it is true

Standard methods allow to bound this probability of error by an ‘acceptable’ risk α

(e.g., α = 0.05)
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Error control

null hypothesis

false true

(drug is effective) (drug is not effective)

test
rejected true discovery type I error

not rejected type II error true negative

P(type I error) = P(reject |H0) ≤ α
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Simulations

� Simulate observations for a non-active feature: X ∼ N (µ, 1) with µ = 0

� Test activation: H0 : µ = 0 (two-sided alternative)

� Using a one-sample t-test, obtain a p-value p

H0 is true −→ p ∼ Unif[0, 1]

Over many simulations, the proportion of rejections is ≈ α
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Multiple hypothesis testing



Tests on multiple features

The goal is testing m hypotheses H1, . . . ,Hm simultaneously from the same data

This is a non-trivial extension of the individual case!

Each test carries the risk of making a type I error

−→ the risk of having at least one may become unmanageable

How do we generalize the concept of type I error and control it?
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Example: ground truth

truth
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Example: tests

rej.

truth
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Example: errors

type 2 type 1 type 1err.

rej.

truth
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Simulations

� Repeat the previous simulations for m independent features:

Xi ∼ N (µi , 1) with µi = 0

� Test activation for each: Hi : µi = 0 (two-sided alternative)

� Obtain m p-values

All hypotheses are true −→ each pi ∼ Unif[0, 1]

Without further adjustments, some of these p-values will be ≤ α!
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m = 1000 tests, 1 simulation
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m tests, 1000 simulations
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m tests, 1000 simulations
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Error control

null hypothesis

false true tot.

test
rejected S V R

not rejected T U m − R

tot. m1 m0 m

We work on the false discoveries (rejections of true null hypotheses):

� number V

� proportion V /R
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FWER control



Familywise error rate

null hypothesis

false true tot.

test
rejected S V R

not rejected T U m − R

tot. m1 m0 m

FWER = P(at least one type I error) = P(V > 0)

A procedure controls it if FWER ≤ α
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Bonferroni correction

Instead of rejecting all pi ≤ α:

� obtain adjusted p-values p̃i = pi ·m
� reject all p̃i ≤ α

The method:

� controls the FWER under any dependence structure of the data

� may be very conservative and lead to many false negatives
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FWER controlling methods

� Bonferroni - always valid

� Holm-Bonferroni - improves Bonferroni and remains always valid

� Hochberg - valid under independence or positive dependence

� Hommel - as Hochberg, slightly more powerful but slower

� . . .

The main methods are implemented in the R function p.adjust
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Example: linear regression

data(mtcars)

fit = lm(mpg ∼ disp + drat + wt, data = mtcars)

p = summary(fit)$coefficients[, 4][-1]

p adj = p.adjust(p, method = "holm")

control p-value disp drat wt

no raw 0.098 0.567 0.014

FWER adjusted (Holm) 0.196 0.567 0.043

19



FWER controlling methods

FWER control may be very stringent, especially when m is large

−→ it can lead to many false negatives, potentially missing important discoveries

This is not the only generalization of the type I error!

� If the goal is to minimize the risk of false discoveries −→ stick to FWER

� If we may allow some false discoveries to occur, as long as the overall proportion

is controlled −→ . . .
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FDR control



False discovery rate

null hypothesis

false true tot.

test
rejected S V R

not rejected T U m − R

tot. m1 m0 m

FDP =
false rejections

rejections
=

V

R
, FDR = E(FDP)

A procedure controls it if FDR ≤ α
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FDR controlling methods

� Benjamini-Hochberg - valid under independence, positive dependenceand many

other settings (not always!)

� Benjamini-Yekutieli - always valid, may be more conservative

� . . .

These methods are implemented in the same function p.adjust
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Example: linear regression

data(mtcars)

fit = lm(mpg ∼ disp + drat + wt, data = mtcars)

p = summary(fit)$coefficients[, 4][-1]

p adj = p.adjust(p, method = "BH")

control p-value disp drat wt

no raw 0.098 0.567 0.014

FWER adjusted (Holm) 0.196 0.567 0.043

FDR adjusted (BH) 0.147 0.567 0.043
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Other methods



Other types of error control

� k-FWER - generalized FWER

� FDX - false discovery exceedance

� JER - joint error rate

� FDP - false discovery proportion

� . . .
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False discovery proportion

FDP =
false rejections

rejections
=

V

R

A procedure controls it if it gives an upper (1− α)-confidence bound B for it:

P(FDP ≤ B) ≥ 1− α

It is desirable to control the FDP of all possible subsets simultaneously
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Error control

Familywise error rate

FWER = P(at least one false discovery) −→ FWER ≤ α

False discovery proportion

FDP =
false rejections

rejections
−→ upper confidence bound

False discovery rate

FDR = E(FDP) −→ FDR ≤ α
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Error control

� FWER - minimizes the risk of false discoveries

� FDR - allows some false discoveries, controls the overall proportion

� . . .

Always state clearly which error is taken into account!

An overview

Goeman and Solari (2014). Multiple hypothesis testing in genomics.

Statistics in Medicine 33
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