ImeEEG

Mass linear mixed-effects modeling of EEG data with crossed random effects

github.com/antovis86/ImeEEG & osf.io/kw87a/

ANTONINO VISALLI

antonino.visalli@unipd.it

osf.io/z4fbr/

Computational Cognitive Neuroscience Lab

Department of General Psychology

University of Padova

- Why ImeEEG?
- ImeEEG in 3 steps
- Validation
- When **not** ImeEEG

- Why ImeEEG?
- ImeEEG in 3 steps
- Validation
- When not ImeEEG

• Mass univariate EEG analysis

- Analysis at each electrode and timepoint (and frequency bin)
- OLS
- Correction for multiple comparisons (TFCE and permutations)

Mass univariate EEG analysis

- Analysis at each electrode and timepoint (and frequency bin)
- OLS
- Correction for multiple comparisons (TFCE and permutations)

NeuroImage Volume 67, 15 February 2013, Pages 111-118 Advanced EEG analysis using thresholdfree cluster-enhancement and non-

Armand Mensen 🝳 🖂 , Ramin Khatami

parametric statistics

Show more 🥆

i≣ Outline 🛛 🔩 Share 🗦 Cite

https://doi.org/10.1016/j.neuroimage.2012.10.027 🏼 🛪

EEG Data Analysis with the Permuco Package

karomil Frossard

BRANE COONTION AND MENTAL HEALTH
Unfold: an integrated toolbox for
overlap correction, non-linear
modeling, and regression-based EEG
analysis
Deckle V Engeneration Conformation

Psychophysiology, Author manuscript, available in PMC 2014 Jun 17. Published in final edited form as: Psychophysiology, 2011 Dec. 48(12): 1711–1725. Published online 2011 Sep 6. doi: 10.1111/j.1469-8986.2011.01273.x

PMCID: PMC4060794 | NIHMSID: NIHMS449395 | PMID: 21895683

Mass univariate analysis of event-related brain potentials/fields I: A critical tutorial review

David M. Groppe, Thomas P. Urbach, and Marta Kutas

NeuroImage Volume 92, 15 May 2014, Pages 381-397

Permutation inference for the general linear model

Anderson M., Winkler." ^{b. c}. R. 55. 😁 , Garard R. Ridgway.^d, Matthew A. Webster.", Stephen M. Smith.", Thomas E. Nichols." *

https://doi.org/10.1016/j.neuroimage.2014.01.060 34

https://benediktehinger.de/blog/science/threshold-free-clusterenhancement-explained/

• Mass univariate EEG analysis

- Analysis at each electrode and timepoint (and frequency bin)
- OLS
- Correction for multiple comparisons (TFCE and permutations)
- Crossed random effects

J ELSEVIER	Journal of Memory a Volume 59, Issue 4, November	and Language
Mixed- crossec and ite	-effects model l random effec ms	ing with cts for subjects
<u>R.H. Baayen</u> ª	Զ⊠, <u>D.J. Davidson</u> ⁵⊠, <u>D.</u>	<u>M. Bates</u> ° 🖂
Show more 🗸	1	
+ Add to Me	ndeley % Share 🍠 Cite	
https://doi.org/1	0.1016/j.jml.2007.12.005 🏾 🛪	Get rights and content 🤇

Mass univariate EEG analysis

- Analysis at each electrode and timepoint (and frequency bin)
- OLS
- Correction for multiple comparisons (TFCE and permutations)
- Crossed random effects

32 channels \times 250 timepoints \times 2000 permutations \times 250 ms = 46 days

64 channels \times 500 timepoints \times 2000 permutations \times 250 ms = 185 days

• Why ImeEEG?

- ImeEEG in 3 steps
- Validation
- When not ImeEEG

STEP 1

Conduct mixed models on each channel/timepoint combination.

$$\mathsf{EEG}_{ch,t} = \mathsf{X}\beta + \mathsf{Z}\upsilon + \varepsilon$$

STEP 2

Extract "marginal" EEG data and perform mass univariate linear regressions.

$$mEEG_{ch,t} = EEG - Zu = X\beta + \varepsilon$$

STEP 3

Perform permutation testing and apply threshold-free cluster enhancement (TFCE).

- Why ImeEEG?
- ImeEEG in 3 steps
- Validation
- When not ImeEEG

VALIDATION 1 *(univariate case)*

- 2000 datasets simulated according to the following model: $y \sim 1 + A \times B + (1 | Subject) + (1 | Item)$
 - A : two-level factor (effects coding). Main effect Cohen's d = 0
 - B : two-level factor (effects coding). Main effect Cohen's d = 0.07
 - A:B interaction Cohen's d = 0.054
 - Random intercepts for Subjects (N = 50) and for Items (N = 50): SD of 0.2
 - Residual errors: SD of 0.2

Effect	Westfall's power	LMM power	ImeEEG power
А	.05	.045	.045
В	.95	~1.00	~1.00
AB interaction	.80	.828	.829

VALIDATION 1 *(univariate case)*

SD of residual errors	Effect	LMM PR	ImeEEG PR
0.6	А	.053	.053
	В	1	1
	AB	.678	.679
1.2	A	.053	.053
	В	.989	.989
	AB	.371	.371
2.4	A	.057	.057
	В	.665	.666
	AB	.161	.161

VALIDATION 2 (Simulated EEG)

- 30 Subject and 10 items and 2 experimental conditions (50 epochs)
- Simulated 19 channels X 110 timepoints EEG data
 - 18 noise components: $2 \mu V$ brown noise + $2 \mu V$ white noise
 - One P3a: $10 \mu V$ (SD = 0.2) + 0.2 μV for Condition B:
 - $P3 \sim 1 + Condition + (1 | Subject) + (1 | Item)$

VALIDATION 2 (Simulated EEG)

Comparison between LMM and ImeEEG (500 permutations):

- Identical β coefficients: no differences in Type S Type M errors
- Standard Errors correlated to ~1
- Same dichotomous decisions: No difference in Type 1 and Type 2 errors
- ImeEEG 300 times faster!!!

VALIDATION 2 (Simulated EEG)

Corrections	Power [TP/(TP+FN)]	Precision [TP/(TP+FP)]	FPR [FP/(FP+TN)]	MCC*
Uncorrected	.8755	.7352	.0441	.7722
Bonferroni	.3670	1	0	.5827
FDR	.4864	.9843	.0011	.6671
TFCE	.8483	.8583	.0196	.8328
ImeEEG TFCE	.8483	.8583	.0196	.8328

E P3

Fp2

F4 F8

-

*Matthews correlation coefficient:

 $MCC = \frac{TP \times TN - FP \times FN}{\sqrt{(TP + FP)(TP + FN)(TN + FP)(TN + FN)}}$

REAL EEG DATA

Psycholinguistic experiment

Semantic decision task

Participants = 58

Words = 176

Montefinese et al. (2024) "How Continuous Concreteness Shapes Brain Processing and Concept Representation Across Diverse Tasks: Insights from an ERP Study". doi:10.22541/au.171249584.45053538/v1

FURTHER APPLICATIONS

Time-frequency data

Source-reconstructed ERP

MEG data

Pupillometry and eye movement data.

It can also account for designs with "nested" random effects, such as in **multi-site** neuroimaging studies.

- Why ImeEEG?
- ImeEEG in 3 steps
- Validation
- When **not** ImeEEG

When **NOT** ImeEEG

Don't use it when you don't have crossed or nested random-effects designs:

• Hard to assess and manage convergence and singularity issues with massive

testing

• No available methods to validate ImeEEG with random **SLOPES**

#FUEL4PSICOSTAT

CONCLUSIONS

- ImeEEG is a valid method to use LMM with EEG mass univariate analyses.
- ImeEEG showed excellent performance properties in terms of power and false positive rate
- ImeEEG overcomes the computational costs of standard available approaches (our method was indeed more than 300 times faster than LMM).
- ImeEEG codes and a tutorial are available at github.com/antovis86/ImeEEG

THANK YOU

Progetto "Giovani Ricercatori"

GR-2019-12371166

