Balancing power analysis with methodology: the unusual (?) case of small sample size

Statistics clinic @Psicostat!!

Sara Garofalo

Department of Psychology, University of Bologna

sara.garofalo@unibo.it

Advantages of Power Analysis

Limitations of Power Analysis

Increased Statistical Power

Higher probability of detecting true effects if they exist

Methods

Samples should be representative of the population

Precision

Estimate the required sample size to achieve a desired level of precision in their results

Sensitivity to Assumptions

Small changes in assumptions can lead to significant changes in sample size estimates

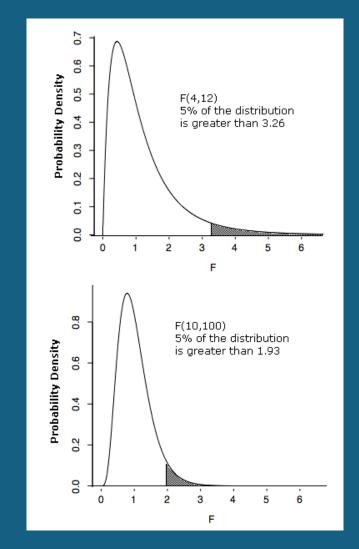
Resource and Ethical Efficiency

Prevents oversampling, optimizing the allocation of time and resources

Complex Designs

Challenging for studies with complex designs or multiple outcomes

Stopping Rule for statistical reasons...

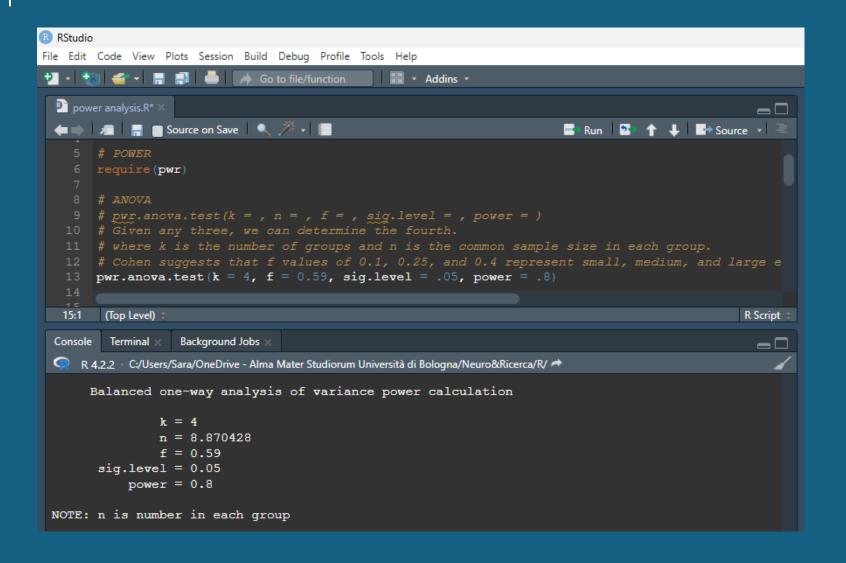

With large sample sizes, even **small differences** between groups can lead to statistically significant results due to

- increased precision
- reduced variability

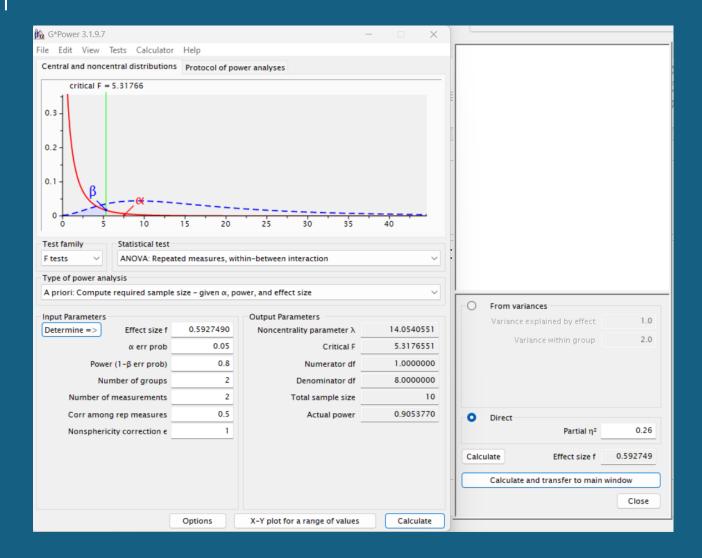
More likely for the observed difference to be deemed statistically significant

(p-value is calculated based on the standard error of the estimate, which decreases with larger sample sizes)

WITH LARGER SAMPLE SIZES, THE STATISTICAL TEST BECOMES MORE SENSITIVE TO DETECTING DIFFERENCES, EVEN IF THOSE DIFFERENCES ARE SMALL IN MAGNITUDE



Large sample size \rightarrow narrower distribution


Central Limit Theorem

the sampling distribution approaches a normal distribution as the sample size increases

The small sample size problem

The small sample size problem

S MorePower 6.0.4		- 🗆	×
Analysis ANOVA r t-test of means 1 sample 2 sample z-test of proport. 1 sample 2 sample Solve For Power Effect Size Sample Size	Design Factors RM 2 • IM 2 • Alpha 2-sides .05 • • Effect Size • etc ² • F	ВМ 2 IM 2	• •
Variability			
Solve 🗸	O S O MSE	2.	
<pre>power = .8, sample = 28 partial eta[±] = .26 Cohen's f = .593 dBIC=-5.099, BF01=.078, BF10=12.799 p(H0 D) = .07246889, p(H1 D) = .92753111 J&H 95% CI ±.549, t(crit) = 2.056, df = 26 mean difference = 1.615561 std. err. of difference = 0.534522 95% CI of difference ±1.099 [F(1,26) = 9.135, p = .00557, MSE = 1., part eta[±] = .26, BF01=.07813]</pre>			
ANOVA Clear Clear Clear Program Information			

Useflul links

- <u>https://www.memoryandlearninglab.it/wp-content/uploads/2024/02/Intro-interaction-workshop.html</u>
- https://cran.r-project.org/web/packages/Superpower/vignettes/intro_to_superpower.html