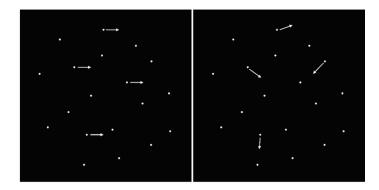


Simulating success: power analysis with nonlinear models using the *simr* package

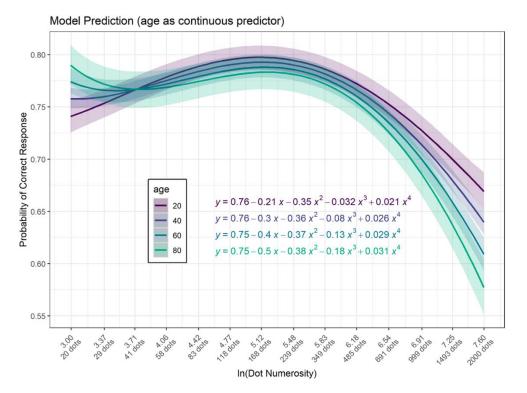

Roberta Cessa

Psicostat meeting - 06/12/2024

The simr package

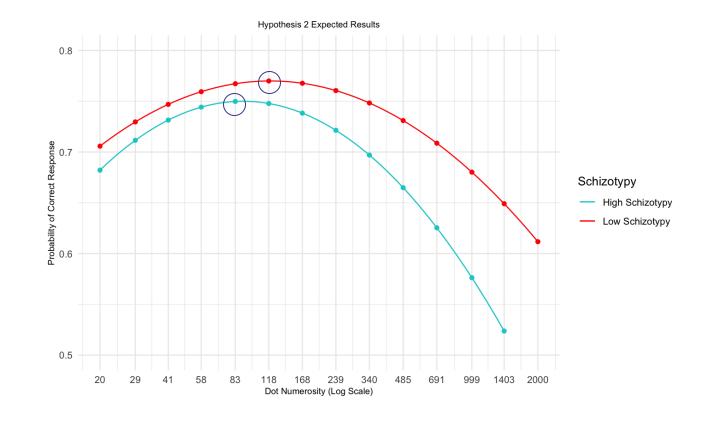
- The *simr* package in R is a tool for conducting power analysis in the context of **generalized linear mixed models (GLMMs)**.
- *simr* allows for
 - **simulation-based** power calculations, which makes it particularly useful for models involving hierarchical data structures;
 - o handling **mixed models** with random intercepts and slopes;
 - o applications to **non-normal distributions** (e.g., binomial, Poisson), common in psychophysical experiments;
 - o extension of existing models to simulate larger sample sizes using the extend() function
 - o visualizations of power to assess power across different sample sizes;
 - interactive and flexible adjustments of effect sizes, variances, or design parameters to perform sensitivity analyses;
 - o evaluation of **specific terms** (e.g., interactions or polynomial effects).

The original study



- The study examined **stochastic resonance** (SR) in motion detection across a lifespan, focusing on how dot numerosity influences performance.
- Results confirmed the characteristic **inverted U-shaped curve of SR**, where optimal performance occurs at intermediate noise levels.
- Key findings:
 - Younger participants showed enhanced motion detection performance with higher dot numerosity
 - Older participants exhibited a flattened curve with peak performance at lower noise levels

The original study



- The study employed a **generalized linear mixed model (GLMM)** with a **binomial family** to analyze motion detection accuracy, accounting for:
 - o Fixed effects → external noise (dot numerosity) modeled as a polynomial function (1), age (2), and their interaction (3)
 - o Random effects → subject-level variability to capture individual differences.
- This model was chosen to reflect the **nonlinear relationships** (e.g., inverted U-shaped curve) between noise levels and detection performance and to address the hierarchical structure of the data (repeated measures per participant).

The new study

- Builds on previous findings of stochastic resonance in visual perception.
- Focuses on **schizotypal traits** and their influence on the interaction between external noise and motion detection accuracy.
- Aims to explore how internal noise impacts perceptual processes and group differences.

Why is simr so appropriate for this study?

- **Hierarchical design** → The GLMM accounts for repeated measures within participants
- Non-linear Interactions → The package allows simulation of power for detecting the hypothesized non-linear relationship between noise levels and performance
- **Customized effect sizes** → Possibility to adjust effect sizes conservatively to reflect a realistic scenario

Simulating success - model fit

First, we fit a GLMM to the old dataset to have the **baseline model parameters** and interactions (e.g., between age and external noise levels) that would inform our simulation-based power analysis for the new study.

Simulating success - extend() and fixef()

extended_model <- extend(best_model, along = "subj", n = 300) # Adjust 'n' based on your needs
fixef(extended_model)['poly(LogDots, 3, raw = FALSE)1:age'] <- fixef(best_model)['poly(LogDots, 3, raw = FALSE)2:age'] <- fixef(best_model)['poly(LogDots, 3, raw = FALSE)2:age'] <- fixef(best_model)['poly(LogDots, 3, raw = FALSE)2:age'] <- fixef(best_model)['poly(LogDots, 3, raw = FALSE)3:age'] *0.5</pre>

Extend model to include the effect of interest

Extends the fitted model (best_model) to simulate data for a larger sample size (300 subjects).

- along = "subj": Specifies that the extension is along the subj (subject) random effect.
- n = 300: Sets the new sample size to 300 subjects.

Adjust fixed effects for power analysis

Modifies the fixed effects of the extended model to simulate a smaller effect size (50% of the original effect size). This is done to test the model's power to detect smaller effects.

- **fixef**: Accesses the fixed effects of the model.
- 0. 5: Reduces the effect size by half for the interaction terms involving LogDots and age.

Simulating success - extend() and fixef()

fixef(extended_model)['poly(LogDots, 3, raw = FALSE)1:age'] <- fixef(best_model)['poly(LogDots, 3, raw = FALSE)1:age']*0.5
fixef(extended_model)['poly(LogDots, 3, raw = FALSE)2:age'] <- fixef(best_model)['poly(LogDots, 3, raw = FALSE)3:age'] <- fixef(best_model)['poly(LogDots, 3, raw = FALSE)3:age'] *0.5</pre>

The three fixef() adjustments correspond to the polynomial coefficients (`poly(LogDots, 3, raw = FALSE)`) that model non-linear interactions between dot numerosity and age.

Why three adjustments?

The polynomial includes:

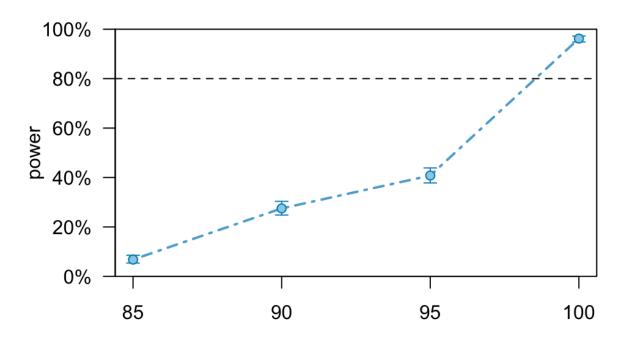
- Linear term \rightarrow changes in slope with age.
- Quadratic term \rightarrow changes in curvature with age.
- Cubic term \rightarrow captures more complex, S-shaped relationships between the two variables

Purpose of adjustment

The terms are scaled by 50% to simulate smaller effect sizes, creating a conservative scenario for power analysis.

- Simulating the interaction as a whole?
- Using different scaling for each term?

Simulating success – powerCurve()


<pre>power_simulation1 <- powerCurve(extended_model,</pre>					
	<pre>fcompare(~ poly(LogDots,</pre>	3, raw = FALSE) + age),			
	along = "subj", breaks =	c(85, 90, 95, 100),			
	nsim = 1000)				

Perform power simulation for the interaction term

It calculates power at different sample sizes by running simulations on a statistical model. It tests a specific hypothesis or comparison.

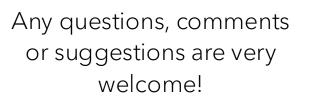
- **fcompare**: Specifies the null model for comparison. This tests whether the fixed effects (polynomial terms and age) improve the model fit significantly when compared to a simpler model (without these terms).
- **along = "subj"**: Varies the sample size along the subj random effect.
- breaks = c(85, 90, 95, 100) : Tests power at specific sample sizes
- **nsim = 1000**: Runs 1,000 simulations for each sample size.

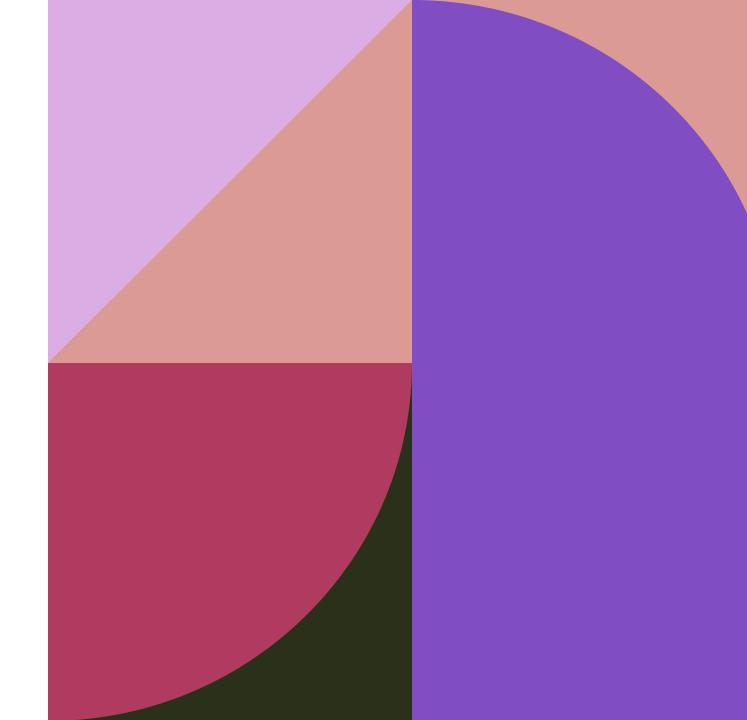
Simulating success - plot() and summary()

number of levels in subj

>	summary(power_simulation1)							
	nrow	nlevels	successes	trials	mean	lower	upper	
1	2380	85	68	1000	0.068	0.0531881	0.08541305	
2	2520	90	275	1000	0.275	0.2475213	0.30381008	
3	2660	95	408	1000	0.408	0.3773486	0.43919468	
4	2800	100	962	1000	0.962	0.9482129	0.97297118	

- Power of 80% is reached with roughly 100 participants
- The curve goes up quite steeply


powerCurve


The *powerCurve* function in the *simr* package estimates statistical power across a range of sample sizes for a specified model. It's a cool tool because it:

o Evaluates power by **simulating data** from a fitted model.

- o Allows testing for fixed effects, random effects, or specific terms.
- Provides flexibility to define sample size increments (breaks) and the number of simulations (nsim).
- o Outputs power estimates with confidence intervals and visualizations via plot ().
- Allows for the implementation of customized functions with test = argument, instead of the default value

Thank you for your attention!

Resources

- <u>https://github.com/pitakakariki/simr</u>
- <u>https://www.rdocumentation.org/packages/simr/versions/1.0.7/topics/powerCurve</u>
- <u>https://cran.r-project.org/web/packages/simr/simr.pdf</u>
- Green, P., & MacLeod, C. J. (2016). SIMR: An R package for power analysis of generalized linear mixed models by simulation. *Methods in Ecology and Evolution*, 7(4), 493-498.
- Cessa, R., Contemori, G., Battaglini, L., Cenk, E., & Bertamini, M. (2024, December 6). Stochastic resonance and neural noise in schizotypal traits: a random dot kinematograms paradigm. <u>https://doi.org/10.17605/OSF.IO/ZX27C</u>
- Di Ponzio, M., Battaglini, L., Bertamini, M., & Contemori, G. (2024). Behavioural stochastic resonance across the lifespan. *Cognitive, Affective, & Behavioral Neuroscience, 24*(6), 1048-1064.