

UNIVERSITÀ DEGLI STUDI DI TRENTO

Dipartimento di Psicologia e Scienze Cognitive

Measurement Invariance with Structural Equation Modeling

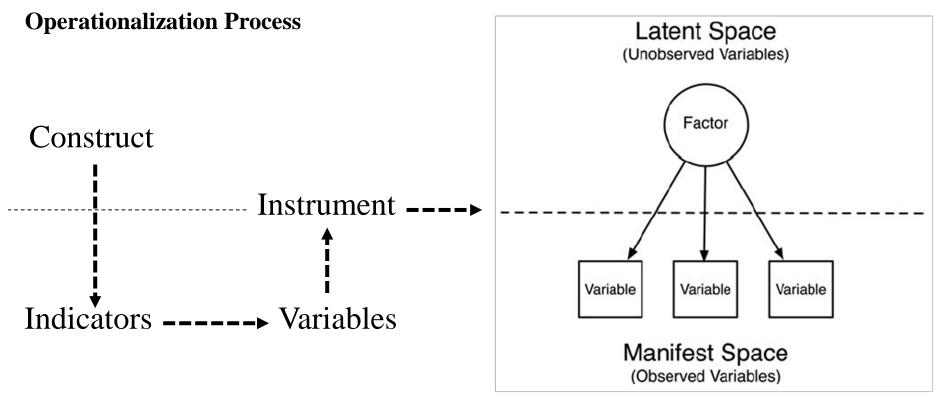
Enrico Perinelli

Department of Psychology and Cognitive Science, University of Trento

PSICOSTAT 3.3 Meeting

June 17, 2022

Contents


- Introduction
- MI with Continuous Indicators
 - Multiple-group
 - Longitudinal
 - Reporting results
 - Multiple-group X Time
- MI with Ordinal Variables
- Other topics
- Conclusion and food for thought

- Measurement Invariance (MI) is a statistical property of a measurement tool
- MI indicates whether the instrument measures the same construct...
 - …across different groups and/or…
 - > ...over time
- Measurement invariance should be (at)tested before comparing groups in a specific variable, as well as before running longitudinal analyses with the same construct(s) assessed over time
- Despite it is a long-standing topic (e.g., Meredith, 1964, Psychometrika), still several research assumes that instruments are invariant "by default"

Two botanists see two plants. One plant is on the south side of a hill; it is tall, has broad leaves, and a slender stem. The other is on the north side of a hill; it is short, thin leaved, and has a thick stem. Although these outward characteristics and differences are easily observed, they wonder whether the two plants are the same species or not. If the plants are the same species, they argue, then the different growth patterns have been shaped by the context of being on the north or south side of a hill. Otherwise, the differences occur because they are different species of plant.

To test their conjectures, **they carefully dig down to the roots of the plants**. If each plant is the same species, it should have a signature root system. In this case, they see that the first plant has three roots, which follow a particular pattern of length and thickness: the first is medium long and medium thick, the second is longest and thickest, and the third is shortest and thinnest. They carefully dig up the other plant and see that it, too, has three roots that follow the same pattern of relative length and thickness, except that, for this plant, they see that, like the plant itself, all the roots are longer and thinner by about the same proportions.

Because both plants have the same number of roots that follow the same pattern of length (<u>loadings</u>) and thickness (<u>intercepts</u>), they conclude that the plants (<u>constructs</u>) are fundamentally the same species (<u>factorially invariant</u>) and that the observed differences (<u>cross-time differences or group differences</u>) are due to the context. They also notice that the amounts of dirt and spindly bits still on the roots appear to be about the same, but they ignore this information because it's just dirt and spindly bits (<u>residuals</u>).

Screenshot from Nesselroade & Molenaar (2016)

Are you sure that the link between latent variable and its indicators is the same across groups and/or time??

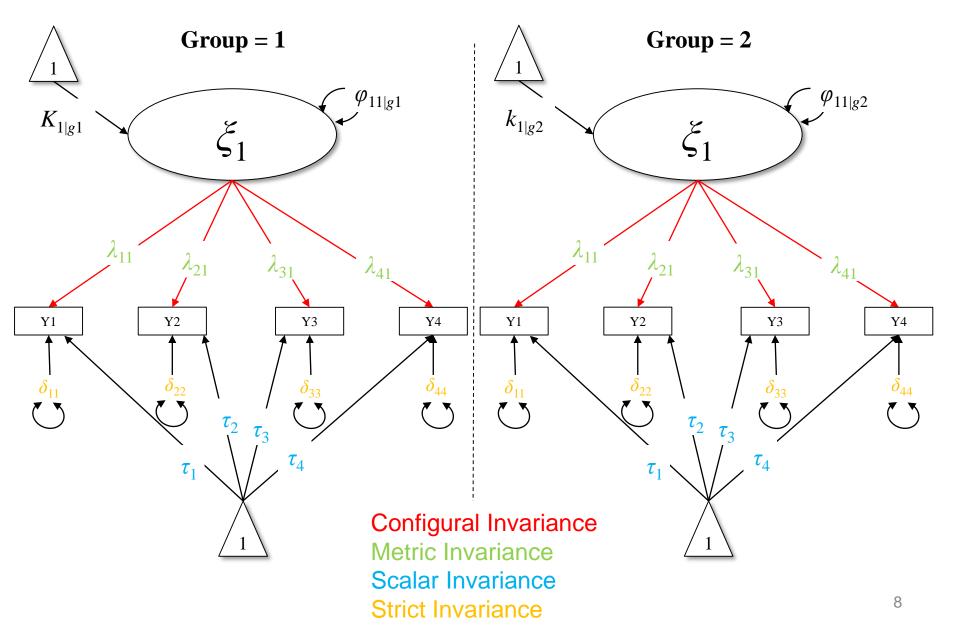
> Thus, MI is a fundamental aspect of Internal/Structural Validity of a measure

Qualitative Validity

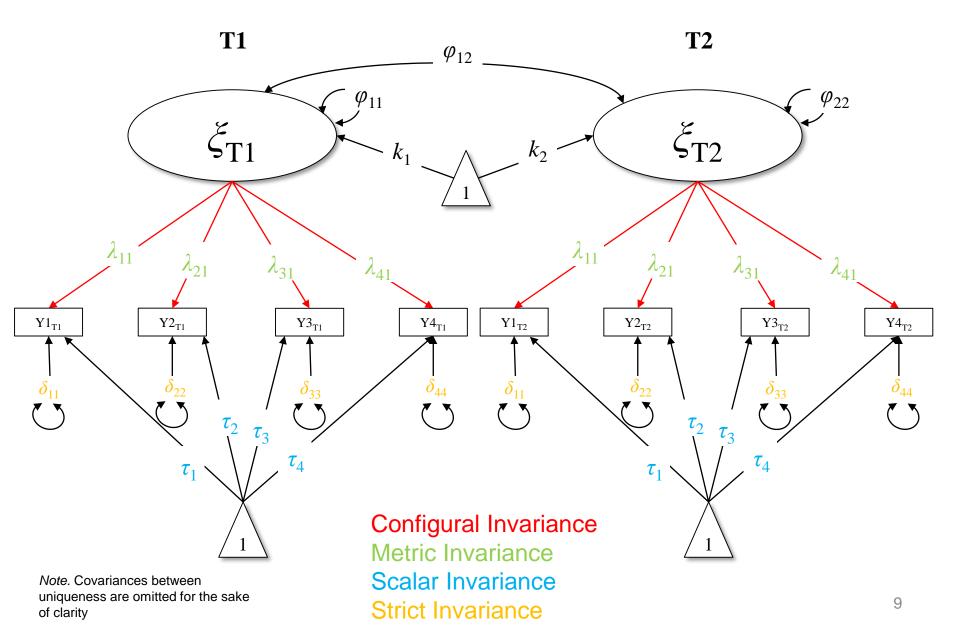
- Face Validity
- Content Validity

Internal (or Structural) Validity

- Reliability
- Measurement Invariance


External Validity

- Construct
- > Criterion
- Convergent
- Divergent
- Discriminant


MI with Continuous Indicators

- > MI is tested by comparing increasingly constrained models
 - ► **Configural Invariance** -> the structure of the latent variable(s) is the same across groups ($g \neq g$ ') and/or over time ($\xi_g = \xi_{g'}$)
 - Metric Invariance (also called Weak Invariance) -> factor loadings are equivalent across groups and/or over time ($\Lambda_g = \Lambda_{g'}$)
 - Scalar Invariance (also called Strong Invariance) -> intercepts of observed variables are equivalent across groups and/or over time (τ_g = τ_{g'})
 - Strict Invariance (also called Residual or Invariant Uniqueness Invariance) -> residual variances of observed exogenous variables are equivalent across groups and/or over time ($\Theta_{\delta,g} = \Theta_{\delta,g'}$)
- Scalar/Strong invariance is requested to compare means

MI with Continuous Indicators – Multiple-group

MI with Continuous Indicators – Longitudinal

MI with Continuous Indicators – Reporting results

Table S2

Longitudinal Measurement Invariance Routine for Effortful Control (5 Time Points)

Informant	Model	$\chi^2(df)$	CFI	TLI	RMSEA	AIC	$\Delta \chi^2 (\Delta df)$	⊿CFI
Р	Configural	87.149*(60)	0.985	0.973	0.049	4,362.84	-	-
	Metric	100.847**(68)	0.981	0.971	0.051	4,360.54	13.698(8)+	.004
	Scalar	117.468**(76)	0.977	0.968	0.054	4,361.16	16.621(8)*	.004
Т	Configural	85.014**(55)	0.975	0.953	0.055	4,105.863	-	-
	Metric	102.259**(63)	0.968	0.946	0.058	4,107.108	17.245*(8)	.007
	Scalar	122.357***(71)	0.958	0.937	0.063	4,111.207	20.098*(8)	.010
	Scalar partial	114.139***(70)	0.963	0.945	0.059	4,104.988	11.880 ^{n.s.} (7)	.005

Note. CFI = Comparative Fit Index; TLI = Tucker-Lewis Index; RMSEA = Root Mean Square Error of Approximation; AIC = Akaike's Information Criterion; P = Parent; T = Teacher. In bold, the level of invariance obtained.

^{n.s.}
$$p > .10. p < .10. p < .05. p < .01. p < .001$$

Invariance step is passed if $\Delta CFI < .10$; otherwise «partial measurement invariance»

MI with Continuous Indicators – Reporting results

Table S2

Longitudinal Measurement Invariance Routine for Effortful Control (5 Time Points)

Informant	Model	$\chi^2(df)$	CFI	TLI	RMSEA	AIC	$\Delta \chi^2 (\Delta df)$	⊿CFI
Р	Configural	87.149*(60)	0.985	0.973	0.049	4,362.84	-	-
	Metric	100.847**(68)	0.981	0.971	0.051	4,360.54	13.698(8)+	.004
	Scalar	117.468**(76)	0.977	0.968	0.054	4,361.16	16.621(8)*	.004
Т	Configural	85.014**(55)	0.975	0.953	0.055	4,105.863	-	-
	Metric	102.259**(63)	0.968	0.946	0.058	4,107.108	17.245*(8)	.007
	Scalar	122.357***(71)	0.958	0.937	0.063	4,111.207	20.098*(8)	.010
	Scalar partial	114.139***(70)	0.963	0.945	0.059	4,104.988	11.880 ^{n.s.} (7)	.005

Note. CFI = Comparative Fit Index; TLI = Tucker-Lewis Index; RMSEA = Root Mean Square Error of Approximation; AIC = Akaike's Information Criterion; P = Parent; T = Teacher. In bold, the level of invariance obtained.

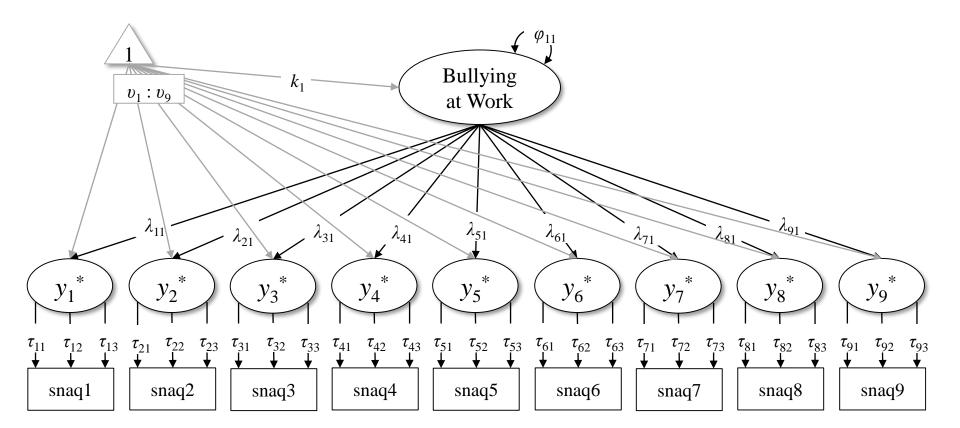
$$p > .10. p > .10. p < .10. p < .05. p < .01. p < .01. p < .001$$

Alessandri, G., Perinelli, E., Filosa, L., Eisenberg, N., & Valiente, C. (in press). The validity of the higher-order structure of effortful control as defined by inhibitory control, attention shifting, and focusing: A longitudinal and multi-informant study. *Journal of Personality*. <u>https://doi.org/10.1111/jopy.12696</u> [Table S2 is in Supplementary Material]

OSF (Mplus and R scripts) https://osf.io/j8cfv/?view_only=94794d1aaf2e41c0990287833ec04594

MI with Continuous Indicators – Multiple-group X Time

Table A1 Gender*Longitudinal Measurement Invariance.


Self-Concept	Gen.Inv.	Long.Inv.	NFP	$YB\chi^2$	df	р	SCF	CFI	TLI	RMSEA	SRMR	CD	$SB\Delta\chi^2$	Δdf	р	ΔCFI
Math	configural	configural	62	45.150	26	0.011	1.1880	0.997	0.993	0.030	0.016					
	metric	configural	56	55.236	32	0.007	1.1009	0.996	0.993	0.030	0.025	0.723	9.912	6	0.128	0.001
	scalar	configural	50	74.157	38	< 0.001	1.1071	0.994	0.991	0.034	0.029	1.140	18.873	6	0.005	0.002
	strict	configural	42	87.701	46	< 0.001	1.0729	0.993	0.992	0.033	0.030	0.910	13.175	8	0.106	0.001
	strict	metric	39	93.600	49	< 0.001	1.0630	0.993	0.992	0.033	0.033	0.911	5.929	3	0.115	0
	strict	scalar	36	120.583	52	< 0.001	1.0654	0.989	0.988	0.040	0.038	1.105	26.229	3	< 0.001	0.004
	strict	strict	32	125.644	56	< 0.001	1.0836	0.988	0.988	0.039	0.038	1.320	5.816	4	0.213	0.001
Verbal	configural	configural	62	56.422	26	< 0.001	1.0674	0.992	0.983	0.037	0.024					
	metric	configural	56	58.367	32	0.003	1.0665	0.993	0.988	0.031	0.026	1.063	1.904	6	0.928	-0.001
	scalar	configural	50	71.194	38	< 0.001	1.0718	0.992	0.988	0.032	0.030	1.100	12.779	6	0.047	0.001
	strict	configural	42	105.586	46	< 0.001	1.0866	0.985	0.982	0.039	0.047	1.157	33.213	8	< 0.001	0.007
	strict	metric	39	108.375	49	< 0.001	1.0791	0.985	0.983	0.038	0.048	0.964	2.300	3	0.512	0
	strict	scalar	36	111.746	52	< 0.001	1.0823	0.985	0.984	0.037	0.047	1.135	3.521	3	0.318	0
	strict	strict	32	127.500	56	< 0.001	1.0773	0.982	0.982	0.039	0.053	1.012	16.214	4	0.003	0.003

Note. Estimation method: MLR + Cluster robust-standard errors. Gen.Inv. = Gender Invariance Step; Long.Inv. = Longitudinal Invariance Step; NFP = Number of Free Parameters; $YB\chi^2$ = Yuan-Bentler scaled chi-square; df = degrees of freedom; SCF = Scaling Correction Factor; CFI = Comparative Fit Index; TLI = Tucker-Lewis Index; RMSEA = Root Mean Square Error of Approximation; SRMR = Standardized Root Mean Square Residual; CD = Difference Test Scaling Correction; SB $\Delta\chi^2$ = Satorra-Bentler scaled chi-square difference; Δdf = difference in degrees of freedom; ΔCFI = difference in CFI.

The level of measurement invariance obtained by the instrument is reported in bold.

Perinelli, E., Pisanu, F., Checchi, D., Scalas, L. F., & Fraccaroli, F. (2022). Academic self-concept change in junior high school students and relationships with academic achievement. *Contemporary Educational Psychology*, 69, Article 102071. <u>https://doi.org/10.1016/j.cedpsych.2022.102071</u>

- With ordinal variables the routine change
- First of all, pay attention that all the observed variables across groups hold the same categories; otherwise, a solution is to collapse two categories in one category (DiStefano, Shi, & Morgan, 2021; but see Rutkowski, Svetina, & Liaw, 2019).
- Second, the steps of invariance are different than the classical one
 - Baseline Model -> Similar to configural invariance for continuous variables
 - Equal Threshold Model -> Fix the thresholds to be equal across groups and/or over time
 - Equal Thresholds and Loadings Model -> Only now you can fix loadings to equality
- Suggested reading for Mplus and R script: Svetina, Rutkowski, & Rutkowski (2020, SEM)

Note. Asterisks indicate latent continuous variables assumed to underlie the observed categorical indicators. Given that we collapsed category 5 within category 4 (due to cells imbalance across gender), each item has 3 thresholds. Residual variance of each y^* is fixed to be zero. Paths for mean-level structure are reported in grey for sake of clarity.

SNAQ AND SEM FOR ROC CURVES

Table 3

Measurement Invariance Results

Software	Model	WLSMV-based χ^2	df	р	CFI	TLI	RMSEA	Scaled- $\Delta \chi^2$	∆df	р	ΔCFI	ΔRMSEA
R(lavaan)	Baseline	150.014	54	< .001	.970	.960	.100	-			-	-
	Equal Thresholds	165.795	63	< .001	.968	.963	.096	13.514	9	.141	.002	004
	Equal Thresholds and Loadings	158.085	71	< .001	.973	.972	.083	5.140	8	.743	005	013
Mplus	Baseline	150.791	54	< .001	.970	.960	.100	-	-	-	-	-
	Equal Thresholds	165.590	63	< .001	.968	.964	.096	13.933	9	.125	.002	004
	Equal Thresholds and Loadings	152.627	71	< .001	.975	.974	.080	5.049	8	.752	007	016

Note. WLSMV = Weighted Least Squares Mean- and Variance-adjusted; df = degrees of freedom; CFI = Comparative Fit Index; TLI = Tucker-

Lewis Index; RMSEA = Root Mean Square Error of Approximation; ΔCFI = decrease in CFI; $\Delta RMSEA$ = increase in RMSEA.

Table 4

Parameters of interest from the 'Equal Thresholds and Loadings Model' estimated in layaan

τ	Jnconstraine	d Parameters	Constrained Parameters					
Parameter		Male Model	Female Model	Parame	ter	Male/Female Model		
Intercepts	<i>v</i> 1	0	0.042	Factor Loadings	λ11	0.794		
	<i>v</i> ₂	0	-0.114		λ21	0.875		
	<i>D</i> 3	0	0.216		λ31	0.789		
	D4	0	-0.099		λ41	0.924		
	v 5	0	0.183		λ51	0.671		
	D6	0	-0.106		λ61	0.530		
	D 7	0	0.156		λ71	0.765		
	<i>D</i> 8	0	0.078		λ81	0.805		
	<i>D</i> 9	0	-0.026		λ91	0.830		
Explained Variance	$R^{2}_{ m snaq1}$	0.630	0.538	Thresholds	τ11 τ12 τ13	-0.092, 0.822, 1.139		
	$R^{2}_{ m snaq2}$	0.765	0.597		τ21 τ22 τ23	0.083, 1.107, 1.403		
	$R^{2}_{ m snaq3}$	0.622	0.619		τ31 τ32 τ33	0.254, 1.166, 1.444		
	$R^{2}_{ m snaq4}$	0.854	0.738		τ41 τ42 τ43	0.552, 1.309, 1.756		
	$R^2_{ m snaq5}$	0.450	0.489		τ51 τ52 τ53	0.249, 1.242, 1.675		
	$R^{2}_{ m snaq6}$	0.281	0.366		τ61 τ62 τ63	-0.749, 0.700, 1.145		
	$R^{2}_{ m snaq7}$	0.586	0.728		τ71 τ72 τ73	0.093, 1.002, 1.388		
	$R^2_{ m snaq8}$	0.649	0.623		T81 T82 T83	0.231, 1.204, 1.591		
	$R^2_{ m snaq}$ 9	0.689	0.549		T91 T92 T93	1.245, 1.900, 2.082		
Latent Variance	φ_{11}	1	0.648	Latent Mean	k_1	0		

Note. Parameters are reported in unstandardized form

- > In the Appendix file (MI_Ordinal.html) you can find more information, such as
 - Kendall rank correlations (in APA style)
 - Reliability for ordinal data
 - R (lavaan) scripts for the Baseline, Equal Thresholds, Equal Thresholds and Loadings models
 - Summary of Results

Introduction	Measurement Invariance with Ordinal Data
Load Libraries and Environment	
Gender x Age Stats	PSICOSTAT 3.3 Meeting
Kendall rank correlations (in APA style)	Enrico Perinelli Department of Psychology and Cognitive Science, University of Trento
Reliability for ordinal data	June 17, 2022
Scripts and Results	Introduction
Summary of Results	This document is an Appendix of the main presentation Measurement Invariance with Structural Equation Modeling . In particular this Appendix may be useful for the interpretation of the section MI with Ordinal Variables
	The items refer to the Italian version of the Short Negative Acts Questionnaire (SNAQ; Balducci et al., 2010; Notelaers et al., 2019)
	It is important to specify that (due to the imbalance of the cells) two categories (4 and 5) were collapsed to one category (i.e., 4). Below, you can find the syntax with the relative item content (note that the value of 5 is collapsed in the value of 4) ¹ .
	# Proseguiamo l'intervista chiedendole di indicare con che frequenza, negli ultimi sei mesi, ha subito ciascuno ei seguenti comportamenti nel suo luogo di lavoro # 1 = mai, 2 = Una volta in tutto o di tanto in tanto, 3 = mensilmente, 4 = Settimanalmente, 5 = Quotidianamente
	<pre>dat <- mobbing_data2 %>% mutate(snaq1=replace(snaq1, snaq1==5, 4), # Le sono state nascoste informazioni che influenzano il suo lavoro snaq2=replace(snaq2, snaq2==5, 4),</pre>

Other topics

- Measurement invariance with second-order factors (Chen, Sousa, & West, 2005)
- Measurement invariance with Exploratory SEM (ESEM; Marsh, Morin, Parker, & Kaur, 2014)
- Approximate Measurement Invariance (this is a Bayesian approach; Muthén & Asparouhov, 2012, *Psychological Methods*; Van De Schoot, Kluytmans, Tummers, Lugtig, Hox, & Muthén, 2013)
- Alignment-within-CFA (AwC) approach (Marsh, Guo, Parker, Nagengast, Asparouhov, Muthén, & Dicke, 2018)
- What if groups are unbalanced? See Yoon and Lai (2018)
- Iavaan tutorial on MI <u>https://lavaan.ugent.be/tutorial/groups.html</u>

Conclusion and food for thought

- Measurement "quality" is a pivotal requirement for attesting the goodness of the research, in particular in **non-experimental research**
- The increasing interest in Big Data, Machine Learning, and Data-driven approaches should not bring researchers to neglect the internal validity of the instruments we use (see the works by Ross Jacobucci, in particular Jacobucci & Grimm, 2020, Machine learning and psychological research: The unexplored effect of measurement. *Perspectives on Psychological Science*)
- Measurement invariance is a structural validity analysis that may give to psychometrics an important place even in fields of applications outside "classical" statistics (e.g., in statistical learning)
- See Bleidorn, Hopwood, & Wright (2017) for some examples about the importance of validity (and implicitly of MI) of digital footprints

UNIVERSITÀ DEGLI STUDI DI TRENTO

Dipartimento di Psicologia e Scienze Cognitive

Thanks for your attention

enrico.perinelli@unitn.it