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Introduction

A linear regression model is defined as
Y=XB8+2Zy+¢

where
@ Y is the outcome
@ X, Z are observed covariates
@ (3, are regression coefficients, g is of direct interest
e £~ N(0,021) is an error term
e the variance 0?2 is assumed common among all the units
o Consider dim(5) =1 and dim(y) > 1
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Introduction: testing problem

We want to test Hy : § = 0 against a one or two-sided alternative
@ [ is the parameter of interest

@ 7,0 are nuisance parameters, not of direct interest but we have to
estimate them

What happens if we ignore some existing heteroscedasticity?
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Introduction: example

Some simulated data with

o yi ~ N(uj,o?)

o pj=xif+ ziy
e cor(xj,zj) =0.5
e =0
o v=1

° 0’,-2 = 4x,-2.
We fit a linear model assuming common variance, testing Hy : 5 =0
with significance level a = 0.05
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Introduction: simulation

Sample size | Proportion of rejection
25 0.20
50 0.21
100 0.21
200 0.21
500 0.22
1000 0.21

Much higher than 0.05, we reject too often (no type | error control!)
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Generalized linear models

Generalized linear models are a flexible tool introduced to extend linear
regression models. Some examples are

@ normal regression with logarithmic link
@ poisson regression

@ logistic regression

Usually we have a strong assumption on the variance structure (e.g.
homoscedastic Normal model, Poisson model, .. .).

Further problem: when the model variance is not constant it is difficult to
check the validity of the assumptions
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Hypothesis testing

The regression model is

g(pi) = ni = xiB + ziv.

Aim: we consider univariate test of the form
Hy:8=0
against a one or two-sided alternative.

We want to build a test robust against variance misspecification
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Sign-flip tests

Sign-flip tests offer an alternative way to do hypothesis testing. Usually
they

@ require less assumptions (semi-parametric tests)
@ converge to the parametric counterpart (when it exists)

@ have exact control of type | error

Riccardo De Santis 13 October 2023



What are sign-flips?

Suppose we have a sample of n observations. Sign-flips are n-dimensional
vectors of 1 and —1. Example, n = 6:

I=F=(11,1,1,1,1)
F2:(171>171717_1)

F64 = (_17 _17 _17 _17 _17 _1)

In general the total amount is 2" different flips.
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Sign-flip tests

The idea is to use a conditional (flipping) distribution of the data. What
does it mean?
@ Let T(/) be any observed test statistic.
e Call T(F) a flipped test statistic. It is obtained by multiplying the
data (or other appropriate quantities) by a sign-flip F.
@ We have a flipping distribution with a total of 2" test statistics.
@ We can perform valid hypothesis testing if

T(/) g T(F) (equality in distribution)

for all sign-flips, when Hp is true
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Sign-flip tests: example

@ We observe a sample of independent observations yi, ..., y,, with
i~ N(u, o)
o We test Hy : u=0vs Hy : p > 0, significance level of «

When Hy is true, y; 4 —y; (equality in distribution).
Use the test statistic T(/) = > ; yi
The flipped test statistic is T(F) = > fiy;

o We have T(/) £ T(F)
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Sign-flip tests: example

@ Call G = 2" the total amount of transformations.
@ We order them
TAF) < ... < TE(F)
o We reject Hy if T(/) > TU(I_O‘)‘GU(F) (which is the 1 — a quantile
of the flipping distribution)
@ Exact control of type | error
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Sign-flip tests: example

We observe a sample of 6 observations (2° = 64)

Y = (—1.63,1.61,0.13,0.66,0.01, —0.65)

T(/)=-163+1.61+0.13+0.66+ 0.01 —0.65 =0.13
T(F2) =1.63+1.61+0.13+0.66 + 0.01 — 0.65 = 3.39
T(F3) =1.63—-1.61+0.13+0.66 +0.01 —0.65 = 0.17

T(Fea) =1.63—1.61 —0.13 —0.66 — 0.01 + 0.65 = —0.13

We reject Ho if T(I) > TO(F)
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Sign-flip test for GLMs

How to apply the idea of sign-flip tests for GLMs?
@ The outcome Y cannot be used. Under Hy : 5 =0

pi=g "0+ z)
@ In general
Wi # =i
d
= yi # Vi

— T() % T(F)
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Effective score

New proposal: use the effective score. It is defined as

T(F) = nY2F(Sy — To,T;1S,) = n 2> v
i=1

B=0,7=%

We have

E[T(/)] = E[T(F)] =0, V[T(F)] == V[T(/)]
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Standardized score

Easy solution to improve the convergence of the test statistic.
Standardized test statistic

To(F) = T(F)/V(T(F))".
We have

E[Ts(N] =E[Ts(F)] =0, V[Ts()] = V[Ts(F)] =1
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Simulation: Poisson model

Example we simulate n observations from the model y; ~ Poisson(;)
o log(ui) = xiB + ziy
o (8,7)=(0,1,1,1)
e cor(x;,zj) =(0.5,0.1,0.1)

We have two competitors: the standard parametric test and the
sandwich estimator. See some simulations!
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Simulation: Poisson model
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Simulation: Logit model
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Simulation: Ignored Heteroscedastic Normal

Linear model with ignored heteroscedasticity. Some simulated data with
e =0
e v=(1,1,1)
) 0:'2 = 4X,-2

e cor(xj,zj) =(0.5,0.1,0.1)
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lgnored Heteroscedastic Normal
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Simulation: True Negative binomial, fitted Poisson

Poisson distribution Negative binomial distribution
e V=N e V=N
o Ely;] = p o Ely;] = pi
o Vlyi] = pi o Vyi] = pi (1 + ¢pi)

We fit a Poisson regression model while the true distribution is Negative
binomial. We set ¢ =1
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True Negative binomial, fitted Poisson
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Simulation: power comparison

If the test is able to control the type | error, it should have good power

For a meaningful comparison we fit a correctly specified Poisson model
setting 8 = 0.3, while we test Hy : 5 =0
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Power comparison
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Code example

##install.packages("flipscores")

Tibrary(flipscores)

set.seed(1l)

X<-rnorm(25)

Z<-rnorm(25)

Y<-rpois(25,abs(z))

mod<-flipscores(Y~X+z,family="poisson" (1ink="Tog"),
score_type = "standardized")

summary (mod)

With n = 1000 and 4 covariates the computational time is ~ 4.2 seconds
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Code example

> summary (mod)

call:
flipscores(formula = ¥ ~ X + z, family = poisson(link = "log"),
score_type = "standardized")

Deviance Residuals:
Min 1q Median 3Q Max
-1.0842 -0.9145 -0.7003 0.2292 2.3617

Coefficients:

Estimate score std. Error z value eff_size Pr(>|z|)
(Intercept) -1.0072 -2.5093 0.6527 -3.8442 -0.630 0.0012 =*
X 0.7292 1.3630 0.9683 1.4076 0.389 0.2058
z -1.0395 -1.1693 0.5107 -2.2896 -0.465 0.0372 =
signif. codes: 0 “**%’ 0,001 ‘**’ 0.01 ‘*’ 0.05 “.” 0.1 ° ’ 1
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