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Reliability and the Disattenuation of Effect Sizes 

When variables are contaminated by random measurement error, standardized effect sizes 

such as the correlation coefficient and Cohen’s d become deflated or attenuated. As first noted 

by Spearman (1904), this bias toward zero can be corrected if one knows the variables’ 

reliability—that is, the proportion of the observed score variance Var(%) made up by “true 

score” variance Var(') rather than measurement error variance Var((): 

)!! =	 "#$(&)"#$(!) =
"#$(&)

"#$(&)("#$()) . (1) 

Estimates of reliability can be used to disattenuate the observed effect sizes. If )*+, is the 

observed correlation between X and Y, the disattenuated (or “corrected”) correlation )- is given 

by: 

)- =	 .!"#
√.$$√.%%

 . (2) 

The disattenuated )- estimates the correlation between the true scores of the two variables 

)('! , 	'0), which is the correlation that would obtain if X and Y had been measured without error. 

For the standardized mean difference between two groups (as in Cohen’s d), the disattenuation 

formula is: 

-- =	 1!"#√.$$
 . (3) 

The reliability of a test can be estimated in several different ways (Revelle & Condon, 

2018). Historically, the most common approach in psychometrics has been to rely on internal 

consistency indices, and specifically on Cronbach’s alpha. The a coefficient provides a lower-

bound estimate of reliability, approaching the true reliability as the test gets closer to tau-

equivalence (i.e., constant true score variance across items). However, tau-equivalence is rarely 
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 INTRODUCTORY.

 All knowledge-beyond that of bare isolated occurrence-
 deals with uniformities. Of the latter, some few have a claim
 to be considered absolute, such as mathematical implications
 and mechanical laws. But the vast majority are only partial;
 medicine does not teach that smallpox is inevitably escaped by
 vaccination, but that it is so generally; biology has not shown
 that all animals require organic food, but that nearly all do so;
 in daily life, a dark sky is no proof that it will rain, but merely
 a warning; even in morality, the sole categorical imperative
 alleged by Kant was the sinfulness of telling a lie, and few
 thinkers since have admitted so much as this to be valid uni-

 versally. In psychology, more perhaps than in any other
 science, it is hard to find absolutely inflexible coincidences;
 occasionally, indeed, there appear uniformities sufficiently reg-
 ular to be practically treated as laws, but infinitely the greater
 part of the observations hitherto recorded concern only more
 or less pronounced tendencies of one event or aftribute to accom-
 pany another.

 Under these circumstances, one might well have expected
 that the evidential evaluation and precise mensuration of tend-
 encies had long been the subject of exhaustive investigation
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 SPEARMAN:

 any prolongation of the series. The deviation has thus become
 general or "systematic."

 Now, suppose that we wish to ascertain the correspondence
 between a series of values, p, and another series, q. By prac-
 tical observation we evidently do not obtain the true objective
 values, p and q, but only approximations which we will call p'
 and q'. Obviously, p' is less closely connected with q', than is
 p with q, for the first pair only correspond at all by the inter-
 mediation of the second pair; the real correspondence between
 p and q, shortly rpq, has been "attenuated" into rp,q.

 To ascertain the amount of this attenuation, and thereby dis-
 cover the true correlation, it appears necessary to make two or
 more independent series of observations of both p and q. Then,

 r - ~ 'rp'q,
 pq Vrp,p,.rq,q,

 where rp q, = the mean of the correlations between each series
 of values obtained for p with each series ob-
 tained for q.

 rp,p, = the average correlation between one and another
 of these several independently obtained series of
 values for p.

 rq,q, = the same as regards q.
 and rpq = the required real correlation between the true

 objective values of p and q.
 Thus, if for each characteristic two such independent series

 of observations be made, say p, P2 q, and q2, then the true

 p,q + plq2 + rp2q, + rp2q2
 pq 4 / (rpP Xr q)

 PlP2 A qi
 Should circumstances happen to render, say, Pl, much more

 accurate than P2, then the correlations involving Pt will be
 considerably greater than those involving P2. In such case,
 the numerator of the above fraction must be formed by the
 geometrical instead of by the arithmetical mean; hereby the
 accidental errors of the respective observations cease to elimi-
 nate one another and therefore double their final influence; they
 also introduce an undue diminution of the fraction.'

 In some exceptional and principally very theoretical cases, it
 may happen that either of the actual measurements, say p', is

 1 By an inversion of the above formula, the correlation between two
 series of observations will be found a useful measure of the accuracy
 of the observations.

 90
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Figure 1. The basic concept of reliability and correcting for attenuation. Adjusting observed
correlations (rxy) by reliabilities (rxx0 , ryy0) estimates underlying latent correlations (⇢�⌘). (See
Equation 3). Observed variables and correlations are shown in conventional Roman fonts, latent
variables and latent paths in Greek fonts.

estimate the precision of our measurement. The problem for Spearman was, and remains
for us today, how to find reliability?

Equations 1 - 6 are intellectually interesting, but not very helpful, for they decompose
an observed measure into the two unobservable variables of latent score and latent error.
To make it even more complicated, all tests are assumed to measure something stable over
time (denoted as T for trait like), something that varies over time (reflecting the current
state and denoted as S), some specific variance (s) that is stable but does not measure
our trait of interest, and some residual, random error (E) (Baltes, 1987; Cattell, 1966b;
Hamaker et al., 2017; Kenny & Zautra, 1995).

Although ultimately interested in the precision of a score for each individual, relia-
bility is expressed as a ratio of variances between individuals1: The reliability of a measure

1
We can also find within subject reliability across time. This will be discussed later.

Disattenuation: correcting effect sizes for measurement error 
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As with correlations, violations of the assumption that 3! does not differ between groups 

have a stronger impact when .>?@ is small, i.e., when secondary factors explain a larger portion 

of the common variance. When .>?@ is large, most of the common variance is explained by the 

general factor, and violations at the level of secondary factors tend to have a smaller impact on 

-8. 

To a good approximation, the standard error of the g-disattenuated -8 is given by: 

C(8 =	C(*+, D
;<&$

=	C(*+,
1&
1!"#

 . (14) 

The same observations made with respect to the standard error of )8 apply here as well. 

Multivariate Differences 

Like regular disattenuation, g-disattenuation may be applied to other effect sizes besides r 

and d. In particular, it can be used to calculate the general-factor version of multivariate effect 

sizes such as Mahalanobis’ D. The D index is the multivariate generalization of Cohen’s d, and 

compares the average profiles of two groups on a set of correlated variables (see Del Giudice, 

2009, 2022, 2023; Olejnik & Algina, 2000).5  

To calculate the g-disattenuated index D8, one must g-disattenaute both the vector of 

standardized mean differences and the (pooled) correlation matrix. This requires the variables 

involved to satisfy the assumptions for both kinds of effect sizes—namely, the secondary factor 

components of all the variables should have equal means across groups and be uncorrelated 

between pairs of variables. This invites some prudence, because assumption violations across 

 
5 The formula is "9 = $%:;&:<=%:	, where % is a column vector of standardized mean differences between groups 
and & is the pooled correlation matrix. A simple R function to calculate and disattenuate D is available at 
https://doi.org/10.6084/m9.figshare.7934942. 
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ABSTRACT
Over the years, research in the social sciences has been dominated by reporting of reliability coef-
ficients that fail to account for key sources of measurement error. Use of these coefficients, in turn,
to correct for measurement error can hinder scientific progress by misrepresenting true relationships
among the underlying constructs being investigated. In the research reported here, we addressed
these issues using generalizability theory (G-theory) in both traditional and new ways to account for
the three key sources of measurement error (random-response, specific-factor, and transient) that
affect scores from objectively scored measures. Results from 20 widely used measures of person-
ality, self-concept, and socially desirable responding showed that conventional indices consistently
misrepresented reliability and relationships among psychological constructs by failing to account
for key sources of measurement error and correlated transient errors within occasions. The results
further revealed that G-theory served as an effective framework for remedying these problems. We
discuss possible extensions in future research and provide code from the computer package R in
an online supplement to enable readers to apply the procedures we demonstrate to their own
research.

In this paper, we address common problems in psy-
chological research of investigators reporting reliability
coefficients that fail to account for key sources of mea-
surement error and then using those coefficients to
disattenuate correlation coefficients. Specifically, our aim
is to highlight limitations of conventional analyses and to
present alternative approaches based on generalizability
theory (G-theory; Brennan, 2001; Cronbach, Gleser,
Nanda, & Rajaratnam, 1972; Shavelson & Webb, 1991).
Our procedures account for the major sources of mea-
surement error affecting scores from objectively scored
measures of individual differences such as Likert-style
questionnaires or multiple-choice tests in which any
scorer would get the same results. The techniques entail
use of repeated measurements with either items or split-
halves serving as the unit of analysis. We provide simple
and practical applications of these approaches using
variance component estimation routines from popular
statistical analysis software. Our applications include
estimating overall reliability, proportions of score varia-
tion accounted for by individual sources of measurement
error, and correlation coefficients corrected for measure-
ment error based on data obtained from 20 subscales

CONTACT Walter P. Vispoel walter-vispoel@uiowa.edu Department of Psychological and Quantitative Foundations, University of Iowa,  Lindquist
Center, Iowa City, Iowa -, USA.
aWe thank the Iowa Measurement Research Foundation for providing research assistantship support for this project, Professor Herbert Marsh for granting us per-
mission to use data from the Self-Description Questionnaire-III in our online supplement, and Patricia Martin for her help in proof reading and formatting tables
within the submitted manuscripts.

from widely administered inventories of personality,
self-concept, and socially desirable responding.

Background

Single-occasion reliability estimates

To chronicle the reporting of reliability coefficients in
applied research, Hogan, Benjamin, and Brezinski (2000)
systematically sampled information for one-third (696
of 2078) of the instruments listed in the Directory of
Unpublished Experimental Mental Measures (Goldman,
Mitchel, & Egelson, 1997). The measures in this directory
were selected from studies published over a five-year
span in 37 professional journals that were primarily from
the fields of education, psychology, and sociology. Of
the 733 reported reliability coefficients for objectively
scored measures that were unambiguously labeled, 548
were alpha/KR-20 (74.8%), 152 were test-retest (20.7%),
and 33 (4.5%) were split-half. Similarly, in a more recent
investigation of studies reported in five gifted education
research journals over a five-year span, Warne, Lazo,
Ramos, and Ritter (2012) found that out of the 130
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allows for derivation of indices reflecting all conditions
within the universe of interest or just the specific con-
ditions included in the study (see, e.g., Brennan, 2001;
Vispoel, Kilinc, Morris, 2018a, 2018b, 2018c, in press).

Indices of score consistency in G-theory are derived
using variance components from ANOVA models. For
the G-theory designs used here, tasks and occasions will
represent the measurement facets of interest, and col-
lege students will represent the objects of measurement.
These facets, in turn, define the desired universe of gener-
alization, resulting in the terms true score and reliability
coefficient in CTT being replaced with the terms universe
score and Generalizability coefficient (G-coefficient) in
G-theory.

Relations with CTT
Vispoel et al. (2018a) demonstrated that traditional
reliability coefficients from CTT are special cases of
G-coefficients within random, single-facet designs. With
items as the facet, G-coefficients are identical to alpha
coefficients. For splits with the same number of items,
G-coefficients equal Rulon split-half coefficients, and
both coefficients coincide with Spearman–Brown split-
half coefficients when split variances are equal. When
splits have different numbers of items, G-coefficients
equal Raju split-half coefficients when multiplied by a
constant. If occasions or forms have the same variance,
G-coefficients are identical to CTT test-retest and
parallel-form coefficients, respectively. Taken together,
these interrelationships indicate that when results for
items, splits, occasions, or forms are parallel (i.e., have
the same true score, observed score, and error variances),
G-coefficients will coincide exactly with corresponding
CTT coefficients. When true-score variances are equal but
observed score and error variances differ, G-coefficients
will represent reliability for essentially tau-equivalent
measures.

Along with these similarities, G-coefficients from
single-facet designs and their CTT counterparts share
the limitation of not completely accounting for and
separating random-response, specific-factor, and tran-
sient error. Addressing these problems through G-theory
would require a persons × tasks × occasions (p × t × o)
design with persons as the objects of measurement and
tasks and occasions as random facets of interest. Tasks
in the present applications will represent either item or
split scores from a measure. With the p × t × o design,
the same measure or measures would need to be admin-
istered on at least two occasions with at least two common
tasks administered on each occasion. Using items or splits
to represent tasks has the practical advantage over forms
of requiring administration of only one form on both
occasions. Carefully constructed splits have the further
advantage over items of being more likely to yield scores

that satisfy essential tau-equivalence, parallelism, or strict
parallelism within a G-theory design.

G-theory indices of score consistency
As is the case with most conventional indices of reliability
(alpha, omega, split-half, parallel-form, and test-retest),
G-coefficients quantify consistency for norm referenc-
ing purposes that emphasize relative differences among
scores. Measures of this nature are typically used to
represent explanatory, control, and dependent variables
in both experimental and non-experimental research
and to generate scores (e.g., percentile ranks, standard
scores, etc.) for particular individuals to indicate where
they fall relative to a norm group on a given characteristic
(personality trait, level of skill, etc.). Like conventional
reliability indices, G-coefficients vary along a 0 to 1 metric
with greater values representing higher score consistency.
However, in contrast to conventional reliability coeffi-
cients, G-coefficients can differentiate multiple sources of
measurement error rather than treating them as a single
collective entity.

The formula used to estimate the G-coefficient for a
random facet, p × t × o design is shown in Equation 1.
More detailed information about the derivation of this
formula and alternative equivalent forms of it based on
more conventional indices are provided in Vispoel et al.
(2018a).

Estimated G-coefficient (CES)

=
σ̂ 2
p

σ̂ 2
p +

[
σ̂ 2
pt
nt + σ̂ 2

po
no + σ̂ 2

pto,e
ntno

] , (1)

where σ̂ 2 = estimated variance, p = person, t = task
(item or split), o = occasion, to = task × occasion inter-
action, pt = person × task interaction, po = person ×
occasion interaction, pto,e = person × task × occasion
interaction and other error, nt = number of tasks, and
no = number of occasions.

Estimates of variance components (σ̂ 2values) for use
in Equation 1 can be obtained from the VARCOMP
procedure in SPSS, from the PROC VARCOMP or PROC
MIXED procedures in SAS, and from the lme4 (Bates,
Maechler, Bolker, & Walker, 2015) or nlme packages
(Pinheiro, Bates, DebRoy, Sarker, & R Core Team, 2016)
in R. Such estimates are also produced in statistical
packages designed specifically for G-theory such as
GENOVA, urGENOVA, and mGENOVA available from
https://education.uiowa.edu/centers/center-advanced-
studies-measurement-and-assessment/computer-prog-
rams; EduG available from Cardinet, Johnson, and Pini
(2010); and G String IV available from http://fhsperd.
mcmaster.ca/g_string. Further guidelines for doing
G-theory analyses using popular statistical packages are
provided by Mushquash and O’Conner (2006).
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because yields direct estimates of the items’ loadings on both the general factor and the 

orthogonalized group factors.2 In this paper, I refer to group factors in bifactor models and 

lower-order factors in hierarchical models with the generic term secondary factors, to distinguish 

them from the general factor of a test.  

The omega-total coefficient (.2) is a reliability index analogous to a; it quantifies the 

proportion of variance in observed scores explained by all the sources of common variance 

among items, which comprise both the general and group factors. The .2 coefficient can be 

calculated from a bifactor solution as: 

.2 =
3∑ 5&'(

')* 6
+
(	∑ 3∑ 5,'(

')* 6
+-

,)*
"#$(!)  , (4)  

where k is the number of items, n is the number of group factors, /89 and /:9 are loadings 

on the general and group factors (respectively), and 0! is the observed score variance of the test, 

assuming that X is a unit-weighted sum of standardized items (Zinbarg et al., 2005). Coefficient 

.2 can be used to disattenuate effect sizes in the usual way, to estimate correlations and mean 

differences between true scores in absence of measurement error: 

)- =	 .!"#
;<.$;<.%

  (5) 

and 

-- =	 1!"#;<.$
 .  (6) 

 
2 The simulations reported by Bell et al. (2024) illustrate the practical equivalence of hierarchical and bifactor 
(Schmid-Leiman) estimates of the general factor variance, despite the different meaning of the general factor in the 
two kinds of models. 
 

Omega-total 
(analogous to alpha)

3Trick #1:  g-disattenuation

Omega coefficients: appropriate when a test taps into general + specific factors (McDonald 1999; Zinbarg et al. 2005)
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In contrast with omega-total, omega-general (.8) estimates the proportion of observed 

score variance explained by the general factor alone, leaving out the additional secondary 

factors:3 

.8 =
3∑ 5&'(

')* 6
+

"#$(!)  . (7) 

Zinbarg et al. (2005) proposed omega-hierarchical (.=) as an alternative label for .8 to 

use specifically when factor loadings are estimated with the Schmid-Leiman transformation from 

an exploratory hierarchical model (as contrasted with a confirmatory bifactor model; see Revelle, 

2024b; Revelle & Condon, 2018). Because of the different constraints imposed on item cross-

loadings, .= tends to yield slightly smaller values than the confirmatory bifactor .8. However, 

the meaning of the coefficients is the same; here, I use .8 as a generic label that includes .= as a 

special case (for a thorough discussion of these and other estimation methods see Cho, 2022). 

Note that estimating .8 with precision requires larger samples compared with .2; also, .8 

estimators perform better as the number of secondary factors increases (Cho, 2022). For more 

details on the performance and limitations of omega indices, see Bell et al. (2024) and Cho 

(2022). 

The ratio between .8 and .2 is the proportion of the common (i.e., true score) variance of 

X accounted for by the general factor. Since measurement error vanishes as test length 

approaches infinity, .8/.2	 provides an estimate of .8 for a test of infinite length with a 

structure analogous to that of the observed test. For this reason, it is called asymptotic .8 

 
3 Note that, if a test is strictly unidimensional (i.e., a general factor and no additional group factors), !/ reduces to 
!0. In this case, the formula for !0 provides an estimate of reliability that is sometimes described as omega-
unidimensional (!1; see e.g., Bell et al., 2024; Flora, 2020).  

Omega-general 
(omega-hierarchical 

h as special case)ω
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(asymptotic .= in Revelle, 2024c), omega-limit (Trizano-Hermosilla et al., 2021), or .>?@ 

(Revelle, 2024b): 

.>?@ =
<&
<.
= 3∑ 5&'(

')* 6
+

A∑ 5&'(
')* B+(	∑ A∑ 5,'(

')* B+-
,)*

 . (8) 

Helped along by several accessible tutorials (e.g., Flora, 2020; McNeish, 2018; Revelle, 

2024b) and easy-to-use statistical functions (for example in the R packages psych [Revelle, 

2024c] and fungible [Waller, 2024]; see also the online app 

https://chocalc.shinyapps.io/ChoCalc/ [Cho, 2022]), omega coefficients are quickly surging in 

popularity. It is becoming more common to see .2 and .8	(often in the form of .=) reported in 

empirical papers, either by themselves or alongside the more traditional a.  

g-Disattenuation 

The growing availability of omega coefficients in the literature affords an interesting 

opportunity that, as far as I know, has not been discussed before. Simply put, .8 can be used to 

disattenuate correlations and other effect sizes, in place of reliability coefficients such as a or .2. 

I call this procedure g-disattenuation. Under the appropriate assumptions, g-disattenuation yields 

an estimate of the corresponding effect size for the underlying general factor(s), net of the 

contribution of secondary factors. Whenever general factors represent the main constructs of 

interest underlying the observed variables, the effect sizes of interest are precisely those at the 

level of those general factors. Disattenuating with .2 (Eqs. 5 and 6) only corrects for the bias due 

to measurement error, but not for the bias introduced by the presence of additional factors (which 

can also be regarded as a source of error if one is attempting to measure the construct described 

by the general factor).  

Omega-infinity 
(AKA limit, asymptotic…)



4

Reviewer #2 (Bill Revelle): “I would not recommend using ωh to correct for attenuation. 
Rather, ωt or total. While ωh represents the amount variance associated with general factor of  
a test, it is not an estimate of  how much correlations with other measures are attenuated.” 

60 
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Compared with the alternative option of fitting a full confirmatory model to the data, g-

disattenuation is a quick, computationally trivial shortcut to calculate effect sizes at the level of 

general factors. Most importantly, effect sizes can be g-disattenuated using published summary 

statistics, even when the raw data are not available; in principle, one may also apply g-

disattenuation to meta-analytic correlation matrices obtained from multiple datasets, each 

containing only a subset of the variables. 

Correlation Coefficients 

The disattenuated correlation )8 estimates the correlation between the general factor 

components of the two variables, 	)(2!,	20). This is the correlation that would obtain if X and Y 

were pure, error-free measures of the respective general factors: 

)8 =	 .!"#
;<&$;<&%

 .  (9) 

The accuracy of )8 depends on coefficients .8! and .80 being accurate, but also on the 

pattern of correlations among the group factors that contribute to X and Y. In particular, )8 is an 

accurate estimate of )(2! , 	20) if the secondary factors of X are uncorrelated with those of Y, 

which is a typical assumption in confirmatory factor analysis when multiple constructs are 

modeled simultaneously. Even if certain secondary factors are cross-correlated between X and Y, 

the effects on )8 may partly or fully cancel out if some correlations are positive and others are 

negative; in other words, what matters is the overall correlation between the secondary factor 

components of X and Y, which can be written as )(3! , 	30). The g-disattenuation formula in Eq. 9 

is based on the assumption that )(3! , 	30) = 0. 

If 3! and 30 are correlated, then )8 can be inflated, deflated, or potentially reversed 

depending on the direction and size of both )(2! , 	20) and )(3! , 	30). If the correlation between 
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.2C.63&6;DC<345$;DC<345%
;<345$;<345%

≤ )(2! , 	20) ≤ .2C.7!8;DC<345$;DC<345%
;<345$;<345%

 . (11) 

As an illustration, consider two variables X and Y with an observed correlation )*+, =

.30. The coefficients for X are .2! = .85, .8! = .55, and .>?@! = .HH
.IH = .65. Variable Y is less 

reliable, but with a stronger contribution of the general factor to the common variance: .20 =

.70, .80 = .60, and .>?@0 = .JK
.LK = .85. The disattenuated correlation based on reliabilities is )- =

.39; this is the estimated correlation between the true scores of X and Y in absence of 

measurement error. The estimated correlation between the underlying general factors is given by 

the g-disattenuated correlation, )8 = .52. As discussed above, this estimate is based on the 

assumption of uncorrelated group factor components between X and Y. If the assumption is 

justified, the estimate can be taken as valid. If the assumption is violated, the correlation between 

general factors must lie between .22 and .82 (from Eq. 10), conditional on the current point 

estimates of the observed correlation and omega coefficients. However, these bounds are 

exceedingly wide and not very useful in practice. If values of the correlation between secondary 

factor components could be plausibly restricted to a narrower range of (say) ±.20, then the 

correlation between general factors would be bounded between .46 and .58 (from Eq. 11).  

To conclude this section, a brief note on standard errors. Disattenuation is not a free 

lunch: the increased accuracy of the estimated effect size is paid for with a corresponding 

decrease in the precision of that estimate. Specifically, the standard error (SE) of the effect size 

increases by about the same amount as the effect size itself (see Schmidt & Hunter, 2014; 

Wiernik & Dahlke, 2020). Naturally, g-disattenuation is no exception to this rule. To a good 

approximation: 

C(8 =	C(*+, D
;<&$;<&%

=	C(*+,
.&
.!"#

 . (12) 

- Key assumption: uncorrelated secondary factor components
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Compared with the alternative option of fitting a full confirmatory model to the data, g-
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statistics, even when the raw data are not available; in principle, one may also apply g-
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)8 =	 .!"#
;<&$;<&%
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pattern of correlations among the group factors that contribute to X and Y. In particular, )8 is an 

accurate estimate of )(2! , 	20) if the secondary factors of X are uncorrelated with those of Y, 
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modeled simultaneously. Even if certain secondary factors are cross-correlated between X and Y, 

the effects on )8 may partly or fully cancel out if some correlations are positive and others are 

negative; in other words, what matters is the overall correlation between the secondary factor 

components of X and Y, which can be written as )(3! , 	30). The g-disattenuation formula in Eq. 9 

is based on the assumption that )(3! , 	30) = 0. 

If 3! and 30 are correlated, then )8 can be inflated, deflated, or potentially reversed 

depending on the direction and size of both )(2! , 	20) and )(3! , 	30). If the correlation between 

 (individual factors may correlate as long as the effects cancel out)

- Easy to calculate bounds on the true correlation if  violated: 

Me: damn, you’re right Me, years later: …wait a minute

- Quick, convenient shortcut that does not require fitting a full SEM; can be calculated from published summary stats
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general factor components is positive, a positive correlation between 3! and 30	will lead to 

inflated values of )8, whereas a negative correlation may deflate )8 or even yield a negative 

estimate. The opposite applies if the correlation between the general factor components is 

negative. When the assumption )(3! , 	30) = 0 is violated, the potential impact on )8 is stronger 

to the extent that secondary factors explain a larger portion of the common variance, yielding 

lower values of .>?@. By contrast, when .>?@ is large, most of the variance is accounted for by the 

general factor, and the potential impact of secondary factors is necessarily limited. However, a 

large .>?@ also means that g-disattenaution is going to yield results very similar to those of 

regular disattenuation, so that )8 will be only slightly larger than )-.  

A simple formula (derived in the Appendix) can be used to compute theoretical bounds 

on the general factor correlation )(2! , 	20), given the current point estimates of )*+,, .2 and .8: 

.2C;DC<345$;DC<345%
;<345$;<345%

≤ )(2! , 	20) ≤ .2(;DC<345$;DC<345%
;<345$;<345%

 . (10) 

The lower bound corresponds to the limit case in which the secondary factor components 

of X and Y are perfectly correlated, so that )(3! , 	30) = 1; the upper bound corresponds to the 

case of perfectly anti-correlated secondary factor components, with )(3! , 	30) = −1. (Note that, 

like the disattenuation formulas in Eq. 5 and 9, Eq. 10 may sometimes return values smaller than 

–1 or larger than 1, to be replaced with ±1.) 

It can be useful to stress that those in Eq. 10 are not confidence intervals on )8, but 

theoretical bounds based on extreme scenarios (correlations of ±1 between secondary factor 

components) that are unlikely to occur in reality. If there are grounds to restrict the plausible 

values of )(3! , 	30) to a narrower interval 9)E*F, )=>8=:, the corresponding bounds become: 
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because yields direct estimates of the items’ loadings on both the general factor and the 

orthogonalized group factors.2 In this paper, I refer to group factors in bifactor models and 

lower-order factors in hierarchical models with the generic term secondary factors, to distinguish 

them from the general factor of a test.  

The omega-total coefficient (.2) is a reliability index analogous to a; it quantifies the 

proportion of variance in observed scores explained by all the sources of common variance 

among items, which comprise both the general and group factors. The .2 coefficient can be 

calculated from a bifactor solution as: 

.2 =
3∑ 5&'(

')* 6
+
(	∑ 3∑ 5,'(

')* 6
+-

,)*
"#$(!)  , (4)  

where k is the number of items, n is the number of group factors, /89 and /:9 are loadings 

on the general and group factors (respectively), and 0! is the observed score variance of the test, 

assuming that X is a unit-weighted sum of standardized items (Zinbarg et al., 2005). Coefficient 

.2 can be used to disattenuate effect sizes in the usual way, to estimate correlations and mean 

differences between true scores in absence of measurement error: 

)- =	 .!"#
;<.$;<.%

  (5) 

and 

-- =	 1!"#;<.$
 .  (6) 

 
2 The simulations reported by Bell et al. (2024) illustrate the practical equivalence of hierarchical and bifactor 
(Schmid-Leiman) estimates of the general factor variance, despite the different meaning of the general factor in the 
two kinds of models. 
 

,



5

g-disattenuation for standardized mean differences between two groups: 

60 
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Note that the standard adjustment formula in Eq. 12 simply takes the coefficients at the 

denominator as given; hence, it does not take into account the sampling error associated with 

.8! and .80. If one wishes to include all the relevant uncertainty and the raw data are available, 

one option is to bootstrap the entire procedure, from the initial estimation of )*+,, .8!, and .80 

to the calculation of )8.  

Standardized Mean Differences 

For standardized mean differences such as Cohen’s d, the g-disattenuation formula is: 

-8 =	 1!"#;<&$
 , (13) 

where -8 is the estimated difference between two groups on the general factor that 

underlies variable X. For -8 to be an accurate estimate of the underlying effect size, observed 

scores must satisfy measurement invariance with respect to the general factor—that is, the same 

latent score on the general factor must correspond to the same expected observed score, 

regardless of group membership (see e.g., Meredith, 1993; Putnick & Bornstein, 2016; Rudnev et 

al., 2018). This implies either that all the secondary factors have equal means across groups, or 

that the effects of different secondary factors cancel out. In both cases, the result is that the 

secondary factor component 3! has equal means between groups, and the observed difference is 

entirely due to 2!. Note that measurement invariance is assumed, at least implicitly, whenever 

one calculates an effect size such as -*+, and interprets it as a group difference on a unitary 

construct (in this case, the general factor).4 Hence, -8 can be regarded as accurate to the extent 

that .8! is accurate and the observed -*+, is a valid effect size with respect to the construct 

measured by the general factor. 

 
4 It is worth stressing again that, while this is the dominant conception of psychometric constructs, it is not the only 
game in town (Revelle, 2024a). 
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As with correlations, violations of the assumption that 3! does not differ between groups 

have a stronger impact when .>?@ is small, i.e., when secondary factors explain a larger portion 

of the common variance. When .>?@ is large, most of the common variance is explained by the 

general factor, and violations at the level of secondary factors tend to have a smaller impact on 

-8. 

To a good approximation, the standard error of the g-disattenuated -8 is given by: 

C(8 =	C(*+, D
;<&$

=	C(*+,
1&
1!"#

 . (14) 

The same observations made with respect to the standard error of )8 apply here as well. 

Multivariate Differences 

Like regular disattenuation, g-disattenuation may be applied to other effect sizes besides r 

and d. In particular, it can be used to calculate the general-factor version of multivariate effect 

sizes such as Mahalanobis’ D. The D index is the multivariate generalization of Cohen’s d, and 

compares the average profiles of two groups on a set of correlated variables (see Del Giudice, 

2009, 2022, 2023; Olejnik & Algina, 2000).5  

To calculate the g-disattenuated index D8, one must g-disattenaute both the vector of 

standardized mean differences and the (pooled) correlation matrix. This requires the variables 

involved to satisfy the assumptions for both kinds of effect sizes—namely, the secondary factor 

components of all the variables should have equal means across groups and be uncorrelated 

between pairs of variables. This invites some prudence, because assumption violations across 

 
5 The formula is " = √%9&:;%	, where % is a column vector of standardized mean differences between groups and 
& is the pooled correlation matrix. A simple R function to calculate and disattenuate D is available at 
https://doi.org/10.6084/m9.figshare.7934942. 
 

- Key assumption: measurement invariance wrt the general factor

Multivariate differences (Mahalanobis’ D): possible but tricky
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Table 1. Omega coefficients, univariate sex differences (Cohen’s d), and multivariate sex differences 
(Mahalanobis’ D) for the 15 personality scales. 

 
 !/ !< !=>? (@AB (C (0 

A. Warmth .87 .70 .81 – 0.35 – 0.38 – 0.42 

C. Emot. Stability .89 .74 .83 0.31 0.32 0.36 

E. Assertiveness .87 .72 .83 0.19 0.21 0.23 

F. Gregariousness .85 .47 .55 0.01 0.01 0.01 

G. Dutifulness .90 .73 .82 0.32 0.34 0.38 

H. Friendliness .92 .82 .89 0.00 0.00 0.00 

I. Sensitivity .75 .44 .59 – 0.80 – 0.93 – 1.22 

L. Distrust .89 .74 .83 0.05 0.05 0.06 

M. Imagination .86 .61 .70 0.11 0.12 0.14 

N. Reserve .90 .81 .90 0.15 0.16 0.17 

O. Anxiety .87 .75 .86 – 0.51 – 0.55 – 0.59 

Q1. Complexity .82 .75 .75 – 0.20 – 0.22 – 0.26 

Q2. Introversion .87 .59 .68 – 0.01 – 0.01 – 0.01 

Q3. Orderliness .86 .53 .62 0.09 0.09 0.12 

Q4. Emotionality .85 .60 .70 – 0.09 – 0.10 – 0.11 

    "@AB "C "0 

Multivariate    1.18 1.49 2.80 

 
Note. (@AB, "@AB = observed mean differences; (C, "C = disattenuated mean differences; (0, "0 = g-disattenuated 
mean differences. Positive values of d indicate that males score higher than females; the multivariate D is 
unsigned. The letters associated with each scale are the conventional trait identifiers in the 16PF model. 

 

The observed ()*+,) and disattenuated correlations ()-) are shown in Table 2, while Table 

3 shows the g-disattenuated correlations ()8, below the diagonal). Note that observed correlations 

are pooled from the male and female subsamples, to avoid double-counting the effect of sex 

differences in means; disattenuated and g-disattenuated correlations are then calculated from the 

pooled observed correlations. 

 

Empirical example: sex differences on 16PF personality traits 
(Kaiser et al. 2020)

- must satisfy assumptions for all rg’s and dg’s 
- violations cumulate across variables 
- disattenuated correlation matrix more likely to be NPD



- exploits the correlational structure of  the data + knowledge about the error-free (disattenuated) correlations

6Trick #2:  Data matrix disattenuation (DMD)

An error correction method that directly adjusts the observed variables to increase their reliability (and yield disattenuated ESs)

- based on the concepts of  matrix whitening and coloring

Let us now work through an example. For the purpose of illustration, I will use a bivariate
Gaussian vector X ⇠ N(0,⌃) where

⌃ =


10 �6
�6 5

�
(8)

Let S be the collection of data points obtained by taking n samples from X. The columns of S
are random vectors Xi, i = 1, 2, ..., n. S can be generated in MATLAB using the following code.

% Generate n samples from colored bivariate Gaussian
n = 200;
CovX = [10 �6;�6 5];
mu = [0 0];
S = mvnrnd(mu,CovX,n);
S = S';

(a) (b) (c)

Figure 1: Scatter plots and Contours. All contours are at Mahalanobis distance 1. (a) Original
colored density of X, (b) decorrelated density of Y, (c) whitenend density of W.

Figure 1(a) shows a scatter plot of the generated samples along with one contour at unit Ma-
halanobis distance. The contour is an ellipse that is centered at the origin and rotated through an
angle. Say that we do not know the parameters of the distribution from which S was obtained so we
estimate them.

µ̂ =
1

n

nX

i=1

Xi =


�0.0753
0.0568

�

⌃̂ =
1

n� 1

nX

i=1

(Xi � µ)(Xi � µ)T

=
1

n� 1

nX

i=1

XiX
T
i

=


9.9559 �5.8718
�5.8718 4.8099

�

The code for the above estimation is given by
% estimate sample mean
mus = mean(S,2);
% estimate covariance
Covs = bsxfun(@minus,S,mus) * bsxfun(@minus,S,mus)'/(n�1);

3
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toward zero (attenuation). To disattenuate the observed correlation robs between two variables X 
and Y, it is sufficient to divide it by the product of the square rots of the reliabilities of X and Y: 

 
!$ =	 %$%&

√%""√%''
 , (2) 

 
where rc is the corrected correlation (i.e., the latent correlation between the true scores of 

X and Y). As a rule, both observed correlations and reliabilities are estimated empirically (for 
example from test-retest data, or from indices of internal consistency); the disattenuated rc is also 
an estimate, whose accuracy depends on the accuracy of the quantities used to compute it (see 
Charles, 2005; Schmidt & Hunter, 2014; Wiernik & Dahlke, 2020; Zhang, 2022). 
 
The Basic DMD Procedure 
 

In a nutshell, the method I propose corrects the data matrix by bringing it in agreement 
with the disattenuated correlation matrix. Let Xobs be a data matrix of observed continuous 
variables. The DMD procedure consists of the following steps: 

 
1. Store the means and variances of the observed variables, then standardize Xobs to 

yield Zobs. Calculate the observed correlation matrix &'(). 
 

2. Use known or estimated reliabilities to obtain the disattenuated correlation matrix &$ 
(see Eq. 2). If &$ is non-positive definite, smooth it to a positive definite matrix 
(which can be done with numerical methods, e.g., Higham, 2002). 
 

3. Obtain a whitening matrix ''() from the observed correlation matrix &'(), and use it 
to decorrelate the variables in the standardized observed data matrix (Zobs). The ZCA 
method is preferred because it maximizes the correlations between the original and 
whitened variables (Kessy et al., 2018).  
 

4. Obtain a coloring matrix '$*+ from the disattenauted correlation matrix &$ (a 
coloring matrix is the inverse of a whitening matrix), and use it to “transfer” the 
disattenuated correlations onto the whitened data matrix. This yields the standardized 
corrected data matrix Zc. 

 
5. If desired, rescale the variables in Zc to the original means, with variances adjusted to 

reflect the correction (more on this below), yielding the unstandardized corrected data 
matrix Xc.  
 

When variables are standardized, the ZCA whitening matrix is ' = &*+/-; thus, steps 3 
and 4 of the procedure reduce to: 

 

($ = )'$*+''()('(). *. = )&$+/-&'()*+/-('(). *.. (3) 
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The code for the above estimation is given by
% estimate sample mean
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% estimate covariance
Covs = bsxfun(@minus,S,mus) * bsxfun(@minus,S,mus)'/(n�1);
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toward zero (attenuation). To disattenuate the observed correlation robs between two variables X 
and Y, it is sufficient to divide it by the product of the square rots of the reliabilities of X and Y: 

 
!$ =	 %$%&

√%""√%''
 , (2) 

 
where rc is the corrected correlation (i.e., the latent correlation between the true scores of 

X and Y). As a rule, both observed correlations and reliabilities are estimated empirically (for 
example from test-retest data, or from indices of internal consistency); the disattenuated rc is also 
an estimate, whose accuracy depends on the accuracy of the quantities used to compute it (see 
Charles, 2005; Schmidt & Hunter, 2014; Wiernik & Dahlke, 2020; Zhang, 2022). 
 
The Basic DMD Procedure 
 

In a nutshell, the method I propose corrects the data matrix by bringing it in agreement 
with the disattenuated correlation matrix. Let Xobs be a data matrix of observed continuous 
variables. The DMD procedure consists of the following steps: 

 
1. Store the means and variances of the observed variables, then standardize Xobs to 

yield Zobs. Calculate the observed correlation matrix &'(). 
 

2. Use known or estimated reliabilities to obtain the disattenuated correlation matrix &$ 
(see Eq. 2). If &$ is non-positive definite, smooth it to a positive definite matrix 
(which can be done with numerical methods, e.g., Higham, 2002). 
 

3. Obtain a whitening matrix ''() from the observed correlation matrix &'(), and use it 
to decorrelate the variables in the standardized observed data matrix (Zobs). The ZCA 
method is preferred because it maximizes the correlations between the original and 
whitened variables (Kessy et al., 2018).  
 

4. Obtain a coloring matrix '$*+ from the disattenauted correlation matrix &$ (a 
coloring matrix is the inverse of a whitening matrix), and use it to “transfer” the 
disattenuated correlations onto the whitened data matrix. This yields the standardized 
corrected data matrix Zc. 

 
5. If desired, rescale the variables in Zc to the original means, with variances adjusted to 

reflect the correction (more on this below), yielding the unstandardized corrected data 
matrix Xc.  
 

When variables are standardized, the ZCA whitening matrix is ' = &*+/-; thus, steps 3 
and 4 of the procedure reduce to: 

 

($ = )'$*+''()('(). *. = )&$+/-&'()*+/-('(). *.. (3) 
 

where ⇤ is a diagonal matrix with the eigenvalues, �i, of ⌃ on the diagonal and � is the matrix of
corresponding eigenvectors, ei. In addition, the columns of � are orthonormal so that

��1 = �T (12)

The first step is to scale the samples so their spread reflects your desired variances along the
principal axes. This step changes the spherical contours to elliptical ones.

Y = ⇤
1
2S (13)

The next step is to rotate the data points so that they are now correlated.

X = �Y = �⇤
1
2S (14)

(a) (b) (c)

Figure 2: Scatter plots and Contours. All contours are at Mahalanobis distance 1. (a) Original white
density of W, (b) scaled density of Y, (c) colored density of X.

Figure 2 shows the mapping from W to Y to X for a bivariate distribution with

⌃ =


10 �6
�6 5

�

It is just like figure 1 from right to left. Finally, add µ to your samples so that the mean is
translated from the origin to your desired location. The transform can be implemented in MATLAB
with the following code.

function[X] = colortran(mu, CovX)

% Find eigenvectors and eigenvalues
[Phi,Lam] = eig(CovX);
% Generate 1000 samples of white data
S = mvnrnd([0 0],eye(2),1000)';
% Scale to desired variances
Y = sqrt(Lam)*S;
% Rotate or correlate samples
X = Phi*Y;
% Add the mean vector to every column of X
X = bsxfun(@plus,X,mu);

end
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toward zero (attenuation). To disattenuate the observed correlation robs between two variables X 
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(see Eq. 2). If &$ is non-positive definite, smooth it to a positive definite matrix 
(which can be done with numerical methods, e.g., Higham, 2002). 
 

3. Obtain a whitening matrix ''() from the observed correlation matrix &'(), and use it 
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method is preferred because it maximizes the correlations between the original and 
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4. Obtain a coloring matrix '$*+ from the disattenauted correlation matrix &$ (a 
coloring matrix is the inverse of a whitening matrix), and use it to “transfer” the 
disattenuated correlations onto the whitened data matrix. This yields the standardized 
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5. If desired, rescale the variables in Zc to the original means, with variances adjusted to 

reflect the correction (more on this below), yielding the unstandardized corrected data 
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   k 

Pop. reliability N  5 10 20 50 100 

rXX = .50 

100  .53 .55 .58 .62 — 
500  .54 .58 .62 .69 .74 

1,000  .55 .58 .63 .70 .76 
5,000  .55 .58 .63 .72 .78 

rXX = .70 

100  .72 .74 .76 .79 — 
500  .72 .75 .78 .83 .86 

1,000  .72 .75 .78 .83 .87 
5,000  .72 .75 .79 .84 .88 

rXX = .90 

100  .90 .91 .92 .93 — 
500  .90 .91 .92 .94 .95 

1,000  .90 .91 .92 .94 .96 
5,000  .90 .91 .92 .94 .96 

 
Table 1. Illustrative simulation results for the DMD method. Disattenuation was based on the true 

population reliabilities (rXX); the mean absolute true correlation between variables was .20-.28 (beta parameter = 4). 
Each cell is the mean reliability of corrected scores across 100 samples. In white cells, the procedure improved the 
reliability of every single variable in each sample. Shaded cells indicate that the corrected reliability was higher than 
the observed reliability at least 90% of the times (lighter shading) or at least 80% of the times (darker shading). N = 
sample size; k = number of variables. 

 
 
Table 2 shows analogous results when the true population reliabilities were not known a 

priori, but assumed to be estimated with substantial error (normally distributed with SD = 0.10). 
As can be seen by comparing these results with those in Table 1, the reliability of corrected 
scores was only slightly lower than in the case of known reliabilities (the difference was never 
larger than .01). This means that, even though it is obviously desirable to estimate reliability as 
accurately as possible, the choice between alternative methods (see e.g., Dunn et al., 2014; 
Revelle & Condon, 2018; Yang & Green, 2011) is not critical for the success of error correction.  
 

Additional simulations (not reported here) showed that systematically underestimating 
the true reliability (which leads to overcorrection for measurement error) is less harmful than 
overestimating it (which leads to undercorrection). This is relevant because Cronbach’s a (the 
most popular index of reliability in psychology) is a lower bound estimate of the reliability.1 
Another implication is that, if the observed reliabilities vary stochastically across samples, the 
reliability of the corrected scores may be maximized by deliberately introducing a slight bias 
toward underestimation.  

 
Table 3 shows simulation results with known reliabilities (as in Table 1), but with 

somewhat stronger correlations among variables (mean absolute correlation = .28-.35, beta = 2).  

 
1 At the same time, note that a overestimates the proportion of variance associated with the general factor of a score 
if the score is not unidimensional; see Cortina (1993); Crutzen & Peters (2017); Schmitt (1996); Yang & Green 
(2011). 

1. Disattenuation with known reliabilities

7

The main procedure reduces to:
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Charles, 2005; Schmidt & Hunter, 2014; Wiernik & Dahlke, 2020; Zhang, 2022). 
 
The Basic DMD Procedure 
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variables. The DMD procedure consists of the following steps: 

 
1. Store the means and variances of the observed variables, then standardize Xobs to 

yield Zobs. Calculate the observed correlation matrix &'(). 
 

2. Use known or estimated reliabilities to obtain the disattenuated correlation matrix &$ 
(see Eq. 2). If &$ is non-positive definite, smooth it to a positive definite matrix 
(which can be done with numerical methods, e.g., Higham, 2002). 
 

3. Obtain a whitening matrix ''() from the observed correlation matrix &'(), and use it 
to decorrelate the variables in the standardized observed data matrix (Zobs). The ZCA 
method is preferred because it maximizes the correlations between the original and 
whitened variables (Kessy et al., 2018).  
 

4. Obtain a coloring matrix '$*+ from the disattenauted correlation matrix &$ (a 
coloring matrix is the inverse of a whitening matrix), and use it to “transfer” the 
disattenuated correlations onto the whitened data matrix. This yields the standardized 
corrected data matrix Zc. 

 
5. If desired, rescale the variables in Zc to the original means, with variances adjusted to 

reflect the correction (more on this below), yielding the unstandardized corrected data 
matrix Xc.  
 

When variables are standardized, the ZCA whitening matrix is ' = &*+/-; thus, steps 3 
and 4 of the procedure reduce to: 

 

($ = )'$*+''()('(). *. = )&$+/-&'()*+/-('(). *.. (3) 
 

- “rediscovery” of  the moment reconstruction technique (Freedman et al. 2004)

Some simulations results (multivariate normal variables, independent errors; mean true correlation = .20-.28)

Reliability: 
corrected 
variables

Reliability:  
observed 
variables

Number of  variables
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   k 
Pop. reliability N  5 10 20 50 100 

rXX = .50 

100  .53 .55 .58 .62 — 
500  .53 .58 .61 .68 .73 

1,000  .54 .57 .62 .69 .75 
5,000  .54 .58 .63 .71 .77 

rXX = .70 

100  .72 .73 .75 .78 — 
500  .72 .74 .77 .82 .85 

1,000  .72 .75 .78 .82 .86 
5,000  .72 .75 .78 .83 .87 

rXX = .90 

100  .90 .91 .91 .92 — 
500  .90 .91 .92 .93 .94 

1,000  .90 .91 .92 .93 .94 
5,000  .90 .91 .92 .93 .94 

 
Table 2. Illustrative simulation results for the DMD method. Disattenuation was based on approximate 
reliabilities (normally distributed, with SD = 0.10 around the population value); the mean absolute true 
correlation between variables was .20-.28 (beta parameter = 4). Each cell is the mean reliability of 
corrected scores across 100 samples. In white cells, the procedure improved the reliability of every single 
variable in each sample. Shaded cells indicate that the corrected reliability was higher than the observed 
reliability at least 90% of the times (lighter shading) or at least 80% of the times (darker shading). N = 
sample size; k = number of variables. 

 
 
 

   k 
Pop. reliability N  5 10 20 50 100 

rXX = .50 

100  .56 .60 .64 .69 — 
500  .57 .62 .68 .76 .81 

1,000  .58 .63 .69 .77 .83 
5,000  .58 .63 .70 .79 .85 

rXX = .70 

100  .74 .77 .80 .83 — 
500  .75 .78 .82 .87 .90 

1,000  .75 .78 .82 .88 .91 
5,000  .75 .78 .83 .88 .92 

rXX = .90 

100  .91 .92 .93 .95 — 
500  .91 .92 .94 .96 .97 

1,000  .91 .92 .94 .96 .97 
5,000  .91 .92 .94 .96 .97 

 
Table 3. Illustrative simulation results for the DMD method. Disattenuation was based on the true 
population reliabilities (rXX); the mean absolute true correlation between variables was .28-.35 (beta 
parameter = 2). Each cell is the mean reliability of corrected scores across 100 samples. In white cells, the 
procedure improved the reliability of every single variable in each sample. Shaded cells indicate that the 
corrected reliability was higher than the observed reliability at least 90% of the times. N = sample size; k = 
number of variables. 

2. Disattenuation with approximate reliabilities (+/- .10)

Knowing the exact reliabilities is not critical; rough estimates will do just fine

- correct standard errors can be recovered via bootstrapping (or with simple formulas for correlations, mean differences)
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Comparison with an alternative error correction method: true score imputation (TSI; Mansolf  2023)
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Table 2 shows analogous results when the true population reliabilities were not known a 

priori, but assumed to be estimated with substantial error (normally distributed with SD = 0.10). 
As can be seen by comparing these results with those in Table 1, the reliability of corrected 
scores was only slightly lower than in the case of known reliabilities (the difference was never 
larger than .01). This means that, even though it is obviously desirable to estimate reliability as 
accurately as possible, the choice between alternative methods (see e.g., Dunn et al., 2014; 
Revelle & Condon, 2018; Yang & Green, 2011) is not critical for the success of error correction.  
 

Additional simulations (not reported here) showed that systematically underestimating 
the true reliability (which leads to overcorrection for measurement error) is less harmful than 
overestimating it (which leads to undercorrection). This is relevant because Cronbach’s a (the 
most popular index of reliability in psychology) is a lower bound estimate of the reliability.1 
Another implication is that, if the observed reliabilities vary stochastically across samples, the 
reliability of the corrected scores may be maximized by deliberately introducing a slight bias 
toward underestimation.  

 
Table 3 shows simulation results with known reliabilities (as in Table 1), but with 

somewhat stronger correlations among variables (mean absolute correlation = .28-.35, beta = 2).  

 
1 At the same time, note that a overestimates the proportion of variance associated with the general factor of a score 
if the score is not unidimensional; see Cortina (1993); Crutzen & Peters (2017); Schmitt (1996); Yang & Green 
(2011). 

DMD
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reliability of mean TSI scores, bringing it closer to that of DMD scores. More imputations, larger 
samples, and (especially) larger numbers of variables considerably increased the computation 
time for TSI (this is why the simulations of Table 6 are based on 10 samples per cell and stop at 
k = 20). In sum, as far as the reliability of corrected scores is concerned, DMD compared 
favorably to TSI, which is noteworthy in light of its comparative simplicity. Of course, TSI has 
other features that may recommend it over DMD, including multiple imputation and the ability 
to accommodate alternative measurement models (see Mansolf, 2023 for details). 
 

 
   k 

Pop. reliability N  5 10 20 

rXX = .50 
100  .48 .51 .47 

1,000  .50 .55 .61 
5,000  .51 .56 .62 

rXX = .70 
100  .69 .71 .73 

1,000  .71 .73 .77 
5,000  .70 .74 .78 

rXX = .90 
100  .89 .91 .91 

1,000  .90 .90 .92 
5,000  .90 .91 .92 

 
Table 6. Illustrative simulation results for the TSI method. Computations were based on the true population 
reliabilities (rXX); the mean absolute true correlation between variables was .20-.28 (beta parameter = 4). 
Each cell is the mean reliability of corrected scores across 10 samples (scores are calculated as the mean of 
10 imputations). In white cells, the procedure improved the reliability of every single variable in each 
sample. Shaded cells indicate that the corrected reliability was higher than the observed reliability at least 
90% of the times (lighter shading), at least 80% of the times (medium shading), at least 50% of the times 
(darker shading), or less than 50% of the times (black). N = sample size; k = number of variables. 

 
 
Conclusion 

 
To conclude: data matrix disattenuation (DMD) is an effective method for correcting 

measurement error in multivariate datasets. It does not require complex analytic choices or 
unwieldy computations; all that users need to provide is a vector of reliabilities (which do not 
have to be estimated very precisely for the method to work). For some applications, it may be 
sufficient to apply DMD and then analyze the corrected data matrix; in other cases, there will be 
the need for additional computations (e.g., bootstrapped SEs and confidence intervals for model 
parameters). I believe DMD has the potential to become a useful addition to the toolkit of error 
correction methods, especially for practicing researchers in search of simple, efficient solutions 
that can be applied to common data-analytic scenarios.  

 
 
 
 
 
 

TSI (avg. of  10 imputations)

- DMD is somewhat more accurate (esp. in small samples)
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Abstract
Statistical indices of masculinity-femininity (M-F) summarize multivariate profiles of sex-related traits as positions on a 
single continuum of individual differences, from masculine to feminine. This approach goes back to the early days of sex 
differences research; however, a systematic discussion of alternative M-F indices (including their meaning, their mutual 
relations, and their psychometric properties) has been lacking. In this paper I present an integrative theoretical framework 
for the statistical assessment of masculinity-femininity, and provide practical guidance to researchers who wish to apply 
these methods to their data. I describe four basic types of M-F indices: sex-directionality, sex-typicality, sex-probability, and 
sex-centrality. I examine their similarities and differences in detail, and consider alternative ways of computing them. Next, 
I discuss the impact of measurement error on the validity of these indices, and outline some potential remedies. Finally, I 
illustrate the concepts presented in the paper with a selection of real-world datasets on body morphology, brain morphology, 
and personality. An R function is available to easily calculate multiple M-F indices from empirical data (with or without 
correction for measurement error) and draw summary plots of their individual and joint distributions.

Keywords  Gender diagnosticity · Masculinity-femininity · Measurement error · Multivariate analysis · Sex differences

In their seminal book Sex and Personality, published almost 
90 years ago, Terman and Miles (1936) proposed that indi-
vidual differences in sex-related traits could be described as 
positions on a continuum of masculinity-femininity (M-F), 
and measured by statistically combining multiple variables 
into a single index. By relating them to the correspond-
ing trait distributions in males and females considered as 
groups, individual profiles can be rated as more or less “mas-
culine” or “feminine,” enabling fine-grained analyses both 
between and within the sexes. The notion of a bipolar M-F 
continuum waxed and waned in popularity throughout the 
twentieth century (see Lippa, 2001); it then experienced a 
renaissance with the introduction of gender diagnosticity 
(GD; Lippa, 1991; Lippa & Connelly, 1990), a method that 
employs discriminant analysis to estimate a person’s prob-
ability of being male versus female (more on this below). 
In recent years, researchers have increasingly used GD and 
other kinds of M-F indices to investigate a variety of topics 

related to gender and sexuality (e.g., Ilmarinen et al., 2023; 
Lippa, 2005; Loehlin et al., 2005; Lönnqvist & Ilmarinen, 
2021; Pozzebon et al., 2015; Rieger & Savin-Williams, 
2012; Semenyna & Vasey, 2016; Udry & Chantala, 2004; 
Verweij et al. 2016).

The idea of using statistical procedures to calculate con-
tinuous M-F scores has some obviously attractive features, 
including parsimony (complex multivariate profiles are sum-
marized by a single dimension of variation) and flexibility 
(there is no need to rely on a particular assessment instru-
ment, questionnaire or otherwise). At the same time, treat-
ing masculinity-femininity as a statistical construct leaves 
it open-ended in two important ways. To begin with, the 
same index may be calculated from different domains of 
sex-related variation. For example, gender diagnosticity is 
usually estimated from profiles of occupational preferences, 
interests, and everyday activities (see Lippa, 2001, 2010), 
but some authors have used variations on this method to 
obtain separate GD scores from personality scales, per-
sonal values, cognitive abilities, and so forth (Ilmarinen 
et al., 2023). Empirically, M-F indices calculated over dif-
ferent domains show only small to moderate correlations 
with one another, indicating that variation in psychological 
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- DMD is computationally much, much faster
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