Psicostat

Disattenuation magic: Learning new tricks from an old method

December 20th, 2024

Marco Del Giudice

University of Trieste

Disattenuation: correcting effect sizes for measurement error

THE PROOF AND MEASUREMENT OF ASSOCIATION BETWEEN TWO THINGS.

By C. SPEARMAN.

^rp'q' $r_{pq} =$ $\sqrt{r_{p'p'}r_{q'q'}}$

$$\eta$$

$$\sqrt{r_{yy'}}$$

$$y'$$

$$\epsilon_4$$

$$r_{\rm c} = \frac{r_{\rm obs}}{\sqrt{r_{XX}}\sqrt{r_{YY}}}$$

$$d_{\rm c} = \frac{d_{\rm obs}}{\sqrt{r_{XX}}}$$

$$D_{\rm c} = \sqrt{\mathbf{d}_{\rm c}^{\rm T} \mathbf{R}_{\rm c}^{-1} \mathbf{d}_{\rm c}}$$

VOL. 53, NO. 4, 481-501

Using Generalizability Theory to Disattenuate Correlation Coefficients for Multiple **Sources of Measurement Error**

Check for updates

Walter P. Vispoel^a, Carrie A. Morris, and Murat Kilinc

Estimated G-coefficient (CES) $\hat{\sigma}_p^2$ $\frac{\hat{\sigma}_{pto,e}^2}{n_t n_o}$ $\hat{\sigma}_p^2 + \left[rac{\hat{\sigma}_{pt}^2}{n_t} + rac{\hat{\sigma}_{po}^2}{n_o} +
ight]$

where $\hat{\sigma}^2$ = estimated variance, p = person, t = task (item or split), o = occasion, $to = \text{task} \times \text{occasion}$ interaction, $pt = person \times task$ interaction, $po = person \times task$ occasion interaction, $pto, e = person \times task \times occasion$ interaction and other error, $n_t =$ number of tasks, and n_o = number of occasions.

Trick #1: g-disattenuation

Omega-total (analogous to alpha)

$$\omega_{t} = \frac{\left(\sum_{i=1}^{k} \lambda_{gi}\right)^{2} + \sum_{f=1}^{n} \left(\sum_{i=1}^{k} \lambda_{fi}\right)^{2}}{\operatorname{Var}(X)}$$

Omega-general (omega-hierarchical $\omega_{\rm h}$ as special case)

$$\omega_{\rm g} = \frac{\left(\sum_{i=1}^k \lambda_{\rm gi}\right)^2}{\operatorname{Var}(X)}$$

 $\left(\sum_{i=1}^k \lambda_{gi}\right)^{k}$ $\omega_{g} =$ **O**mega-infinity $\omega_{inf} =$ $\left(\sum_{i=1}^{k} \lambda_{gi}\right)^2 + \sum_{f=1}^{n} \left(\sum_{i=1}^{k} \lambda_{fi}\right)$ (AKA limit, asymptotic...) ω_{t}

Reviewer #2 (Bill Revelle): "I would not recommend using ω_h to correct for attenuation. Rather, ω_t or total. While ω_h represents the argunt variance associated with general factor of a test, it is not an estimate of how much correlations with other measures are attenuated.

[T]

) Bifactor

D) Se

ctor

0

Me: damn, you're right

 $\rightarrow \omega_g$ (or ω_h) can be used to estimate correlations between general factors

$$r_{\rm g} = \frac{r_{\rm obs}}{\sqrt{\omega_{\rm gX}}\sqrt{\omega_{\rm gY}}}$$

$$SE_{g} = SE_{obs} \frac{1}{\sqrt{\omega_{gX}}\sqrt{\omega_{gY}}} = SE_{obs} \frac{r_{g}}{r_{obs}}$$

- Key assumption: uncorrelated secondary factor components $r(F_X, F_Y) = 0$ (individual factors may correlate as long as the effects cancel out)
- Easy to calculate bounds on the true correlation if violated:

- Multivariate differences (Mahalanobis' D): possible but tricky
- must satisfy assumptions for all r_g 's and d_g 's violations cumulate across variables
- disatten interview disatten attend correlation matrix more likely to be NPD

Empirical example: sex differences on 16PF personality traits (Kaiser et al. 2020)

	ω_{t}	$\omega_{ m h}$	$\omega_{ m inf}$	$d_{\sf obs}$	d_{c}	d_{g}
A. Warmth	.87	.70	.81	- 0.35	- 0.38	-0.42
C. Emot. Stability	.89	.74	.83	0.31	0.32	0.36
E. Assertiveness	.87	.72	.83	0.19	0.21	0.23
F. Gregariousness	.85	.47	.55	0.01	0.01	0.01
G. Dutifulness	.90	.73	.82	0.32	0.34	0.38
H. Friendliness	.92	.82	.89	0.00	0.00	0.00
I. Sensitivity	.75	.44	.59	-0.80	- 0.93	-1.22
L. Distrust	.89	.74	.83	0.05	0.05	0.06
M. Imagination	.86	.61	.70	0.11	0.12	0.14
N. Reserve	.90	.81	.90	0.15	0.16	0.17
O. Anxiety	.87	.75	.86	-0.51	- 0.55	- 0.59
Q1. Complexity	.82	.75	.75	-0.20	-0.22	-0.26
Q2. Introversion	.87	.59	.68	-0.01	- 0.01	-0.01
Q3. Orderliness	.86	.53	.62	0.09	0.09	0.12
Q4. Emotionality	.85	.60	.70	- 0.09	- 0.10	-0.11
				D _{obs}	D _c	Dg
Multivariate				1.18	1.49	2.80

Trick #2: Data matrix disattenuation (DMD)

An error correction method that directly adjusts the observed variables to increase their reliability (and yield disattenuated ESs)

- based on the concepts of matrix whitening and coloring
- exploits the correlational structure of the data + knowledge about the error-free (disattenuated) correlations
 - 1. Store the means and variances of the observed variables, then standardize X_{obs} to yield \mathbf{Z}_{obs} . Calculate the observed correlation matrix \mathbf{R}_{obs} .
 - 2. Use known or estimated reliabilities to obtain the disattenuated correlation matrix \mathbf{R}_{c} (see Eq. 2). If \mathbf{R}_{c} is non-positive definite, smooth it to a positive definite matrix (which can be done with numerical methods, e.g., Higham, 2002).
 - 3. Obtain a *whitening matrix* W_{obs} from the observed correlation matrix R_{obs} , and use it to decorrelate the variables in the standardized observed data matrix (\mathbf{Z}_{obs}). The ZCA method is preferred because it maximizes the correlations between the original and whitened variables (Kessy et al., 2018).
 - 4. Obtain a *coloring matrix* W_c^{-1} from the disattenauted correlation matrix R_c (a coloring matrix is the inverse of a whitening matrix), and use it to "transfer" the disattenuated correlations onto the whitened data matrix. This yields the standardized corrected data matrix \mathbf{Z}_{c} .
 - 5. If desired, rescale the variables in \mathbf{Z}_{c} to the original means, with variances adjusted to reflect the correction (more on this below), yielding the unstandardized corrected data matrix **X**_c.

The main procedure reduces to: $\mathbf{Z}_{c} = (\mathbf{W}_{c}^{-1}\mathbf{W}_{obs}\mathbf{Z}_{obs}^{T})^{T} = (\mathbf{R}_{c}^{1/2}\mathbf{W}_{obs}\mathbf{Z}_{obs}^{T})^{T}$

- "rediscovery" of the moment reconstruction technique (Freedman et al. 2004)

Some simulations results (multivariate normal variables, independent errors; mean true correlation = .20-.28)

				Numb	er of va	ariables	•								
-					k			-					k		
	Pop. reliability	N	5	10	20	50	100		Pop. reliability	$oldsymbol{N}$	5	10	20	50	100
Doliability	$\rho_{XX} = .50$	100	.53	.55	.58	.62	—	Reliability: corrected variables $\rho_{XX} = .50$ $\rho_{XX} = .70$ $\rho_{XX} = .70$		100	.53	.55	.58	.62	
chaomid		500	.54	.58	.62	.69	.74		500	.53	.58	.61	.68	.73	
variables		1,000	.55	.58	.63	.70	.76		1,000	.54	.57	.62	.69	.75	
		5,000	.55	.58	.63	.72	.78			5,000	.54	.58	.63	.71	.77
	ρ_{XX} = .70	100	.72	.74	.76	.79				100	.72	.73	.75	.78	
		500	.72	.75	.78	.83	.86		70	500	.72	.74	.77	.82	.85
		1,000	.72	.75	.78	.83	.87		ρ_{XX} = .70	1,000	.72	.75	.78	.82	.86
		5,000	.72	.75	.79	.84	.88			5,000	.72	.75	.78	.83	.87
	ρ_{XX} = .90	100	.90	.91	.92	.93				100 .	.90	.91	.91	.92	
		500	.90	.91	.92	.94	.95		$\rho_{XX} = .90$	500	.90	.91	.92	.93	.94
		1,000	.90	.91	.92	.94	.96			1,000	.90	.91	.92	.93	.94
		5,000	.90	.91	.92	.94	.96			5,000	.90	.91	.92	.93	.94

1. Disattenuation with known reliabilities

-> Knowing the exact reliabilities is not critical; rough estimates will do just fine

$$^{/2}\mathbf{R}_{obs}^{-1/2}\mathbf{Z}_{obs}^{\mathrm{T}}$$

- correct standard errors can be recovered via bootstrapping (or with simple formulas for correlations, mean differences)

2. Disattenuation with approximate reliabilities (+/-.10)

Comparison with an alternative error correction method: true score imputation (TSI; Mansolf 2023)

				k		
Pop. reliability	$oldsymbol{N}$	5	10	20	50	100
	100	.53	.55	.58	.62	
50	500	.54	.58	.62	.69	.74
ρ_{XX} = .50	1,000	.55	.58	.63	.70	.76
	5,000	.55	.58	.63	.72	.78
$ ho_{XX} = .70$	100	.72	.74	.76	.79	
	500	.72	.75	.78	.83	.86
	1,000	.72	.75	.78	.83	.87
	5,000	.72	.75	.79	.84	.88
$\rho_{XX} = .90$	100	.90	.91	.92	.93	
	500	.90	.91	.92	.94	.95
	1,000	.90	.91	.92	.94	.96
	5,000	.90	.91	.92	.94	.96

DMD

Behavior Research Methods https://doi.org/10.3758/s13428-024-02369-5

ORIGINAL MANUSCRIPT

framework

Marco Del Giudice¹

			k	
Pop. reliability	$oldsymbol{N}$	5	10	20
	100	.48	.51	.47
ρ_{XX} = .50	1,000	.50	.55	.61
	5,000	.51	.56	.62
	100	.69	.71	.73
$ ho_{XX}$ = .70	1,000	.71	.73	.77
	5,000	.70	.74	.78
	100	.89	.91	.91
ρ_{XX} = .90	1,000	.90	.90	.92
	5,000	.90	.91	.92

TSI (avg. of 10 imputations)

- DMD is somewhat more accurate (esp. in small samples)

- DMD is computationally much, much faster

Email: marco.delgiudice@units.it

Web: marcodg.net

