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Introduction
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Are we all the same?
Psychological phenomena are sometimes considered universal among all human beings.
Examples:
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Example Study

I am measuring the relationship between choice in university
course and depression diagnosis in university students. I send
an e-mail on the University mailing list asking for volunteers.

X are the predictors (age, gender, course etc..)
Y the target variable (depression diagnosis)
S is the selection mechanism

Selection Mechanism
A variable that indicates who is included in the study. If Si = 1
the i-th individual in the population is included in the study
(answer my email).
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Basic Setting

X predictors
Y target variable
S ∈ {0, 1} selection, if Si = 1 then
observation i is the dataset

Usually S = 1 is a very small part
of the population.
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Basic Setting

X predictors
Y target variable
S ∈ {0, 1} selection, if Si = 1 then
observation i is the dataset

Usually S = 1 is a very small part
of the population.

What happens to all the i where
S = 0?
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Can we do this?

Just run:
glm(Y ∼ X, family =
binomial(link = ’logit’))

Question
Can we ignore the selection mechanism S?
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Can we do this?

Why Selection but not
Missigness?
Would we ignore missing data?
If M is the missingness mechanism
Si = 1 → Mi = 0 and
Si = 0 → Mi = 1
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Selection (Missingness) Mechanisms

Define: X predictors, Y target variable, S ∈ {0, 1} selection, if
Si = 1 then observation i is the dataset, f(·) is a function.

MAR: Missing (Selection) at Random
The good kind

P (S = 1) ∼ f(X),
P (S|X,Y )

P (S|X)
= 1

Also called Ignorable Selection:We can focus on n.
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Selection (Missingness) Mechanisms

Define: X predictors, Y target variable, S ∈ {0, 1} selection, if
Si = 1 then observation i is the dataset, f(·) is a function.

MNAR: Missing Not at Random
The not so good kind

P (S = 1) ∼ f(X,Y ),
P (S|X,Y )

P (S|X)
̸= 1

Also called Non-Ignorable Selection.
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Example Study

X predictors such as: which course the student is in, age, gender etc..
Y target variable: diagnosis of depression

Examples of Ignorable selection
- Students of social sciences (X) might be more interested in the
research topic.
- Female (X) students might be more agreeable and therefore
willing to dedicate some time.

Examples of Non-Ignorable selection
- Depressed students (Y ) might not reply to emails.
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I’ll just use the individuals
who answered, as long as
there are some with a
diagnosis of depression!
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MNAR in Population Totals Estimation
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Population total estimation task
Estimate the total number of students with a diagnosis of
depression in the University of Padua: ȲN =

∑N
i Yi.

Question
What would be the bias of this estimate?
bias = E(Y N − Y n)

bias = Y N − Y n =
E(Y S)

E(S)
− E(Y ) =

Cov(S, Y )

E(S)
(DDI)

= Corr(S, Y )︸ ︷︷ ︸
Data Quality

×

√
1−

∑N
i Si/N∑N

i Si/N︸ ︷︷ ︸
Data Quantity

× σY︸︷︷︸
Problem Difficulty

Meng (2018), pag. 680
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∑N
i Yi.

Question
What would be the bias of this estimate?
bias = E(Y N − Y n)

bias = Y N − Y n =
E(Y S)

E(S)
− E(Y ) =

Cov(S, Y )

E(S)
(DDI)

= Corr(S, Y )︸ ︷︷ ︸
Data Quality

×

√
1−

∑N
i Si/N∑N

i Si/N︸ ︷︷ ︸
Data Quantity

× σY︸︷︷︸
Problem Difficulty

Meng (2018), pag. 680

Alberto Arletti MNAR in Population Totals Estimation 15 / 36



Consequences of the lurking Monster N

Design Effect
How much more bias are we having in our study due to S not being
optimal (Simple Random Sampling).

Design Effect

Deff =
E(ȲN − Ȳn)

2

VSRS(Ȳn)
= (N − 1)E(Corr2(S, Y ))

Meng (2018), pag. 696
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Deff =
E(ȲN − Ȳn)

2

VSRS(Ȳn)
= ( N − 1)E(Corr2(S, Y ))

N?
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How Statisticians Slew the
Monster of Population Size:
Random Sampling

Random Sampling: No matter the size
of the plate (population, N) we can take
a small bite (sample, n) and judge the
whole meal.

Random
Sampling

N
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Population total estimation task
Estimate the total number of students with a diagnosis of
depression in the University of Padua: ȲN =

∑N
i Yi.

Question
What would be the bias of this estimate?
bias = Y N − Y n

Without Random Sampling:

(Expected bias)2 ∝ ( N − 1)E(Corr2(S, Y ))
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Psychologists

"But I don’t need to
estimate population total, I
am just interested in the
coefficients!"
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MNAR in Coefficients Estimation
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Consequences of the lurking Monster N , pt. 2

Coefficient estimation task
Estimate the coefficient of regression β indicating the
relationship between university course and depression diagnosis.

Red Flag
Regression assumes i.i.d. (independence between observations).

If observations are i.i.d.:

n = neff
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Consequences of the lurking Monster N

Effective sample size

neff =
n

Deff
, Deff = (N − 1)E(Corr2(S, Y ))

We compare the MSE of Ȳn with the MSE of Simple Random Sampling
with sample size n. We set n∗

eff as the effective sample size for our
sample:

neff ≤ n∗
eff =

n

1− f

1

N E(Corr2(S, Y ))

Meng (2018), pag. 698
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Consequences of the lurking Monster N

neff ≤ n∗
eff =

n

1− f

1

NE(Corr2(S, Y ))

n = 250 sample size
N = 65.000 population size of UniPd students
f = n

N sampling rate
E(Corr2(S, Y )) = expected correlation between outcome and selection
mechanism.

We imagine a correlation similar to the one of the US election (0.00021).

neff ≤ 18
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Consequences of the lurking Monster N , pt. 2

Coefficient estimation task
Estimate the coefficient of regression β indicating the
relationship between university course and depression diagnosis.

Red Flag
Regression assumes i.i.d. (independence between observations).

Observations are not i.i.d.!

n ̸= neff
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Consequences of the lurking Monster N , pt. 2

Coefficient estimation task
Estimate the coefficient of regression β indicating the
relationship between university course and depression diagnosis.

Coefficients must be wrong. In MNAR:

if
P (S|X,Y )

P (S|X)
̸= 1 then

P (Y |X,S = 1)

P (Y |X,S)
̸= 1

or, in other words: P (Y |X,S = 1) ̸= P (Y |X,S)

which means:
β̂S=1 ̸= βS

Proof in Sahoo et al. (2022), Theorem 2.
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Example

Enders (2022), Ch. 9

Alberto Arletti MNAR in Coefficients Estimation 27 / 36



The Big Data Paradox
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A Simple Simulation - MAR

N = 65000, f = 0.005, p = 5, MAR Sample
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A Simple Simulation - MNAR and large n

N = 65000, f = 0.105, p = 5, MNAR Sample
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A very broad problem

Prof. Xiao-Li Meng

Big Data Paradox:
The bigger the data, the surer we fool ourselves
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Random Samples: An Endangered Species

Are representative samples possible in the
social sciences?
"..the idea will rarely work in a complicated social
problem because we always have additional variables
that may have important consequences for the
outcome." Kruskal and Mosteller (1979)

Cost of single survey
internet panel mail phone face to face

< 10$ 48$ 81$ 192$

Diffusion of Online Surveys
In 2010, 31% of all surveys in Germany were online.
Heen et al. (2014)
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